• Title/Summary/Keyword: 난방에너지 절감율

Search Result 26, Processing Time 0.023 seconds

Development and Economic Effect of Integrated Optimum Operation System using Wide Area Energy (광역에너지이용 통합 최적화 운전 시스템 개발 및 경제적 효과)

  • Lee, Hoon;Kim, Lae-Hyun;Chang, Won-Seok
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.221-229
    • /
    • 2009
  • This study develops the optimized operation program which enables effective and economic operation between individual and connected branch offices by analyzing the current status and influential indicators of district heating companies' capital branch offices. Accordingly, the study examines the efficiency of optimized operation program. In doing so, this study has diagnosed and analyzed various factors, such as boilers, pumps, and relevant tags (temperature, pressure, fuel amount) through investigation of individual branch offices, and finally succeeded in developing wide-ranging data base by factor covering one-year time period. Additionally, after running the optimized operation program, different branch offices, optimum preference has turned out "incinerator receiving heat from KEPCO>CHP >PLBs>PLBw." Meantime, except the connected offices, there has been no big difference between actual and optimum operation program in branch offices. Meanwhile, the integrated optimum operation program has made it possible the most optimal result only via the connecting supply and demand heat without changing received Heat from KEPCO which is the same as total productive heat. The result has showed that the reduction percentage per day is 2.45~6.80%, and the reduction cost per day is 22,727~60,077 thousand won given the randomly selected sample days. In particular, winter time shows the highest demand with the largest reduction cost whereas summer time illustrates the lowest demand with the smallest reduction cost. Given this result, reduction cost per year compared to actual heat production cost for one year theoretically would be 84 hundred million won. Also, the economic effect showed that the reduction cost percentage per year is more than 2.74% on heat production cost per year for all capital branch offices.

Survey and model development of the mechanization for swine farming (양돈농가의 기계화 실태분석 및 모델개발)

  • 이성현;박원규;강창호;오권영
    • Journal of Bio-Environment Control
    • /
    • v.7 no.2
    • /
    • pp.91-108
    • /
    • 1998
  • This study was carried out to survey basic information of swine farms on the machine holdings. facility type. management of manure by farm scale and operation, and then to develop the mechanization model. Manual feeding was common for sows and nursing sows. but automation feeding was normally furnished for weaners. growing pigs and castrated male pigs. Water supplies was completely automated for all of the surveyed swine farms. Fully mechanized and automated system would not be feasible and affordable for the small scale farms breeding less than 500 heads. Because the environmental control for the nursing sows and weaner was important, some swine houses were constructed with the windowless type. However, the furnished rates ranged from 22.2% to 44.4% of the surveyed nursing sow and weaner houses at the farm scales. In the future, a computerized ventilation system would be commended for the efficient use of heat energy and to maintain the desirable temperature of swine buildings. Over-investment for large scale farm and over-crowded pigpen of small farm would cause wasting construction expenses and spreading epidermic diseases Hence, the size of swine building should follow the recommended scale. The fermentation drier was recommended for the manure management. Urine could be recycled or discharged after treating by the activated sludge process.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.

Comparison of Heat Exchanging Performances Depending on Different Heat Exchanging Pipe Arrangement (열회수장치의 열교환 파이프형식별 열교환 성능 비교)

  • 서원명;윤용철;강종국;김정섭
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.100-102
    • /
    • 2001
  • 본 연구에서는 온실의 난방에 사용되는 열풍식 난방기 등의 배기 연통에 부착하여 배출되는 가스로부터 열을 회수할 수 있는 장치를 개발함에 있어서 연통과 열회수 장치간의 열 교환 성능을 3가지 상이하게 설계된 열 교환 장치(Fig. 1 참조)에 대하여 실험적으로 비교 분석하였다. Fig. 1-(a)는 열 교회수기 개발을 위해 기존에 사용한 장치로서 회수용 공기의 흐름방향이 배기 연통과 직각을 이룬 형식이며, Fig. 1-(b) 및 (c)는 열 회수 성능 개선을 위해 새로 설계된 형식으로서 각각 열 교환 파이프의 배치형식이 상이하나 회수용 공기의 흐름방향이 180도로 굴곡되는 U-자형 흐름이 이루어지도록 하였다. 실험에 사용된 공기 순환 펜의 용량은 AB-형의 경우에는 최대 25㎥/min이고, C-형 및 D-형의 경우는 공히 최대 42㎥/min으로서 송풍전압 조절장치를 이용하여 풍량을 연속적으로 조절할 수 있도록 하였다. U-자형 흐름형식인 C-형 및 D-형의 경우 흐름 방향의 굴곡으로 인한 마찰저항이 있을 것으로 예상은 했으나 당초 예상했던 것에 비해 마찰 저항이 지나치게 큰 것으로 밝혀졌다. 비록 설계된 열교환 튜브의 배열형식별 열 교환기의 외부 모양이 달라 회수기의 표면을 통한 대류 열 교환이 다소 차이를 보일 것으로 예상되지만 본 연구에서는 열 회수장치에 내장된 열 교환 튜브부분만을 통한 열 회수율을 중심으로 형식간의 성능을 비교하였다. 실험을 통하여 측정된 자료중 대표적인 예는 Fig-2와 같으며, 측정자료를 기준으로 분석된 열회수 성능에 대한 설계형식별 비교 결과는 Table-1과 같으며, 분석된 결과를 요약하면 다음과 같다: 1. AB-형 열회수시스템의 경우, 초기 투자비용과 현재의 농용 전력요금 하에서 에너지 절감규모를 비교하면, 대체로 1년을 전후하여 투자에 대한 보상이 충분히 가능할 것으로 판단된다. 2. C-형 및 D-형 열회수시스템의 경우, 열 회수용 공기의 흐름방향이 동일 공간내에서 180도 굴절됨으로서 저항이 크게 발생되어 송풍 펜의 전압 증가에 따른 유속증가가 미미하였으며, 굴절형의 열교환장치는 비록 열교환면적은 직선형과 유사하더라도 송풍 펜의 공기저항이 커져서 결국 열 회수성능이 기대했던 것만큼 크게 개선되지는 못했다. 3. 송풍펜의 용량은 AB-형에 사용된 용량인 25㎥/min 전후가 적절할 것으로 판단되며, 적정 송풍 펜용량 하에서 열 회수성능은 굴절형이 직선형보다 효과적인 것으로 나타났다. 다만, 곡선형은 물론 직선형에서도 열교환 튜브의 배치밀도, 튜브 길이 및 두께 등의 변화에 따른 최적화 연구가 수반되어야 할 것으로 판단된다.

  • PDF

A Study on the Utility Interactive Photovoltaic System Using a Chopper and PWM Voltage Source Inverter for Air Conditioner a Clinic room (병실 냉.난방을 위한 초퍼와 PWM 전압형 인버터를 이용한 계통 연계형 태양광 발전시스템에 관한 연구)

  • Hwang, L.H.;Na, S.K.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.360-369
    • /
    • 2008
  • The solar cells should be operated at the maximum power point because its output characteristics were greatly fluctuated on the variation of insolation, temperature and load. It is necessary to install an inverter among electric power converts by means of the output power of solar cell is DC. The inverter is operated supply a sinusoidal current and voltage to the load and the interactive utility line. In this paper, the proposes a photovoltaic system is designed with a step up chopper and single phase PWM voltage source inverter. Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper is operated in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature for solar cell has typical dropping character. The single phase PWM voltage source inverter is consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be develop continuously by connecting with the source of electric power for ordinary using. It can be cause the efect of saving electric power, from 10 to 20%. The single phase PWM voltage source inverter operates in situation, that its output voltage is in same phase with the utility voltage. The inverter are supplies an ac power with high factor and low level of harmonics to the load and the utility power system.