• Title/Summary/Keyword: 난류경계층

Search Result 292, Processing Time 0.024 seconds

Interscale transport of the Reynolds stress in a turbulent boundary layer subjected to adverse pressure gradient (역압력 구배 난류 경계층에서 레이놀즈 응력의 스케일 간 수송)

  • Yoon, Min
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2022
  • An interscale transport of the turbulent kinetic energy (TKE) and Reynolds shear stress (RSS) is examined in an adverse pressure gradient (APG) turbulent boundary layer (TBL). The direct numerical simulation data of an APG TBL at Reτ = 834 and β = 1.45 is employed. The TKE and RSS transport equations are divided into large and small scales, leading to the introduction of interscale transport. The TKE mainly transfers from large scales to small ones in the outer region, and vice versa for the RSS. An interscale transport of TKE and inverse interscale transport of RSS are amplified by APG, and the latter results in the increase in large scales of TKE production. Some of outer large scales of enhanced TKE transfer to small scales and then dissipate by viscosity, and the remains dissipate turbulent-non-turbulent interfaces by turbulent transport.

An experimental study on the Free stream turbulence of Floating body with vertical plate (연속부착된 수직평판을 갖는 부유구조물 후류의 자유유동 난류강도에 대한 실험적연구)

  • Kim, Ho;Oh, Kyoung-Gun;Gim, Ok-Sok;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.125-126
    • /
    • 2007
  • In this paper, the floating body with vertical plate is introduced with a study on the flow patterns and characteristics in around the floating body by using 2 frame particle tracking method. This paper introduce an analysis method to predict the characteristics if flow around the neighboring fields if Floating Body with vertical plate in order to investigate a high performance model. Flow visualization has conducted in a drcu1ating water channel by a high speed camera and etc. Flow phenomena according to turbulence intensity distribution and flow separation around the floating body with vertical plate were obtained by two-dimensional PIV system.

  • PDF

Towards Prediction of Unsteady Turbulent Flow over a Square Cylinder using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 정사각주 주위의 비정상 난류유동의 예측)

  • Lee Sangsan
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • 비유선형 물체 주위의 유동은 정체유동, 경계층 박리 및 재부착, 주기적 와열의 생성등의 복잡한 유동현상이 공존한다. 이와 같은 유동의 2-방정식 난류모델을 이용한 정확한 예측은 일반적으로 불가능 하다고 인식되어 왔으나, 본 연구에서는 기존의 비교적 단순한 난류모델을 활용한 정사각주 주위의 비정상 난류유동의 예측 가능성을 체계적으로 규명하였다. 적절한 난류모델의 선정과 더불어 시간 정확도, 공간 정확도 및 대류항 처리법 등이 해석의 결과에 미치는 영향을 살펴 보았다. 기존의 표준 κ-ε모델은 정체점 주위에서 난류생성항의 과도한 예측으로 말미암아 재부착 및 와열생성의 정확한 예측이 불가능 하였으나, RNG κ-ε 모델을 사용한 경우 이와 같은 현상을 제거 할 수 있었다. 그러나 이 경우에도 예측의 정확도가 시간 증분, 격자의 크기 및 대류항 처리법 등에 영향을 받았으며, 특별히 대류항 처리법에 따라 상당히 민감하게 변하는 것을 알 수 있었다.

  • PDF

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path (굽어진 유로 내부의 충격파-경계층 상호작용 수치연구)

  • Kim, Jae-Eun;Jeong, Seung-Min;Choi, Jeong-Yeol;Hwang, Yoojun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.36-44
    • /
    • 2021
  • Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.

Transition Flow Analysis According to the Change of Reynolds Number for Supersonic Launch Vehicle Fairing Expansion Area (초음속 발사체 선두 팽창부의 레이놀즈수 변화에 따른 천이 유동 해석)

  • Shin, Ho-Cheol;Park, Soo-Hyung;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.367-375
    • /
    • 2017
  • RANS computational analysis was performed on the head of the launch vehicle including the hammerhead nose pairing in the supersonic regime. The two-dimensional axisymmetric analysis was performed by using laminar, fully turbulent and transition models and compared with the experimental data. It was observed that different flow phenomena occurred depending on the Reynolds number. Under the high Reynolds number condition, the boundary layer becomes turbulent, which is not separated from the surface of the launch vehicle. With the low Reynolds number condition, laminar separation bubble was produced due to the separation and reattachment of the boundary layer on the expansion-compression edge of the hammerhead type nose fairing. The three-dimensional computations with the angle of attack showed a fully detached vortical structure due to the laminar separation bubble. It is proved that the turbulent transition should be considered to predict the separation bubble with the Reynolds number.

Numerical Simulation of Locally-Forced Turbulent Boundary Layer (국소교란에 의한 난류 경계층 유동의 수치해석)

  • Ri, Gwang-Hun;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.96-107
    • /
    • 2001
  • An unsteady numerical simulation was performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer. The local forcing was given to the boundary layer flow by means of sinusoidally oscillating jet. A version of the unsteady $\kappa$-$\xi$-f(sub)u model (Rhee and Sung 2000) was employed. The Reynolds number based on the momentum thickness was about Re(sub)$\theta$=1700. The forcing frequency was varied in the range 0.011$\leq$f(sup)+$\leq$0.044 with a fixed forcing amplitude A(sub)o=0.4. The predicted results were compared and validated with the experimental data. It was shown that the unsteady locally-forced boundary layer flow is predicted well by the $\kappa$-$\xi$-f(sub)u model. The effect of the pitch angle of local forcing on the reduction of skin friction was also examined.

An Experimental Study on the Transport of Turbulent Energy in the Transitional Boundary Layer (천이영역에서 난류에너지의 이동에 관한 실험적 연구)

  • 임효재;백성구;이원근
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2003
  • This paper considered the structural mechanism of transitional boundary layer by the experimental approach. In order to measure the turbulence quantity in the boundary layer, we made a wind tunnel with 400${\times}$190${\times}$2500 mm test section and a flat plate with well fabricated leading edge. Hot wire anemometer was used for acquiring the continuous turbulence signal which is processed by special software. The results of experiment show that the region where turbulence spot is dominant moves from near wall to overall layer and thus the anisotropy of velocity fluctuation shows so large value. Also the turbulence energy originally contained in low frequency band comes up to the high frequency band. Finally the turbulence model needs minimum two length scales to consider the pre-transition region.

Characteristics of Wall Pressure Fluctuations in a Turbulent Boundary Layer after Blowing or Suction (흡입/분사가 있는 난류 경계층 내 벽압력 변동의 특성)

  • Kim, Joong-Nyon;Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1342-1350
    • /
    • 2003
  • A direct numerical simulation of a spatially-developing turbulent boundary layer is performed to examine the characteristics of wall pressure fluctuations after the sudden application of wall blowing or suction. The uniform blowing or suction is given by the wall-normal velocity through a spanwise slot at the wall. The response of wall pressure fluctuations to uniform blowing or suction is analyzed by computing the turbulence statistics and frequency spectra. It is found that wall pressure fluctuations are more affected by blowing than by suction. The large elongated structure of wall pressure fluctuations is observed near the maximum location of $(p_w)_{rms}$ for blowing. The convection velocities for blowing increase with increasing the streamwise location after the slot. For both blowing and suction, the small scale of wall pressure fluctuations reacts in a short downstream distance to the spanwise slot, whereas the large scale recovers slowly in a farther downstream.

Vibration of Beams Induced by Wall Pressure Fluctuation in Turbulent Boundary Layer Using Numerical Approaches (수치 해석을 이용한 난류 경계층 내 벽면 변동 압력을 받는 보의 진동 해석)

  • Ryue, Jungsoo;Kim, Eunbi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.698-706
    • /
    • 2013
  • Structural vibration induced by excitation forces under turbulent boundary layer is investigated in terms of the numerical analysis in this paper. Since the responses of structures excited by the wall pressure fluctuation(WPF) are described by the power spectral density functions, they are calculated and reviewed theoretically for finite and infinite length beams. For the use of numerical approaches, the WPF needs to be discretized but conventional finite element method is not much effective for that purpose because the WPF lose the spatial correlation characteristics. As an alternative numerical technique for WPF modelling, a wavenumber domain finite element approach, called waveguide finite element method, is examined here for infinite length beams. From the comparison between the numerical and theoretical results, it was confirmed that the WFE method can effectively and easily cope with the excitation from WPF and hence the suitable approach.