• Title/Summary/Keyword: 나일론 6

Search Result 152, Processing Time 0.024 seconds

Flame Retardancy and Mechanical Property of Polypropylene/ Nylon Nanocomposite Reinforced with Montmorillonite (몬모릴로나이트로 강화된 폴리프로필렌/ 나일론 나노복합재료의 난연특성 및 기계적 특성)

  • 이종훈;박호식;안인구;이윤희;김연수;이영관;남재도
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.576-582
    • /
    • 2003
  • When the halogenated flame retardant, decabromodiphenyl oxide, was added to the polypropylene/nylon blend, and was compounded with montmorillonite and compatibilizer, maleic anhydride polypropylene, the improvement of flame retardancy and mechanical properties was investigated. The degree of dispersion between polymer resin and inorganic nanoparticles was investigated, and the flame retardancy and mechanical properties was measured quantitatively. XRD results showed that the montrnorillonite was com-pletely exfoliated after polypropylen/nylon nanocomposites was mixed above twice. By compounding with montmorillonite, polypropylene/nylon blend system was overcome the deterioration of flame retardancy. The tensile strength and impact strength were slightly increased, and by compounding with montmorillonite, the additional increase in mechanical properties was obtained. Therefore, the flame retardancy of polypropylene / nylon blend was decreased by adding nylon, but by compounding with inorganic nanoparticle, improvement of the flame retardancy and mechanical properties was obtained.

Plasma-Surface-Treatment of Nylon 6 Fiber for the Improvement of Water-Repellency by Low Pressure RF Plasma Discharge Processing (나일론 6 섬유의 발수성 향상을 위한 RF 플라스마 표면처리)

  • Ji, Young-Yeon;Jeong, Tak;Kim, Sang-Sik
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • It has been reported that the surface properties of the plasma treated material were changed while maintaining its bulk properties. In this study, surface modification of nylon fiber by plasma treatment was tried to attain high water-repellency Nylon fiber was treated with RF plasma under a vacuum system using various parameters such as gas specious, processing time and processing power. Morphological changes by low pressure plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, the mechanical and inherent properties were analyzed by tensile strength, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The high water-repellency property of nylon fiber was evaluated by a water-drop standard test under various conditions in terms of aging effect. The results showed that the water-repellency of plasma-surface-treated nylon fiber was greatly improved compared to untreated nylon fiber.

Effects of Sizing Treatment of Carbon Fibers on Mechanical Interfacial Properties of Nylon 6 Matrix Composites (탄소섬유의 사이징처리가 탄소섬유/나일론6 복합재료의 기계적 계면 특성에 미치는 영향)

  • Park, Soo-Jin;Choi, Woong-Ki;Kim, Byung-Joo;Min, Byung-Gak;Bae, Kyong-Min
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.2-6
    • /
    • 2010
  • The sizing treatments of PAN-based carbon fiber surfaces were carried out in order to improve the interfacial adhesion in the carbon fibers/nylon6 composite system. The parameter to characterize the wetting performance and surface free energy of the sized fibers were determined by a contact angle method. The mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of sized CFs/nylon6composites were observed by SEM. As the experimental results, it was observed that silane-based sizing treated carbon fibers showed higher surface free energies than other sizing treatments. In particular, the KIC of the sizing-treated carbon fibers reinforced composites showed higher values than those of untreated carbon fibers-reinforced composites. This result indicated that the increase in the surface free energy of the fibers leads to the improvement of the mechanical interfacial properties of carbon fibers/nylon6 composites.

Evaluation of the Burning Properties of Various Carpet Samples by using the Cone Calorimeter and Gas Toxicity Test (콘칼로리미터와 가스유해성 시험법을 이용한 카페트류의 연소특성 평가)

  • Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Jang-Won;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the burning behaviours of five different kinds of carpet samples covered with nylon, PP (polypropylene), PTT (poly(trimethylene terephthalate)), wool fabric and NW (nylon and wool) were evaluated by using the cone calorimeter having a radiant flux of 50kW/$m^2$. And the combustion gas toxicity was evaluated according to KS F 2271 test method. As a result of the cone calorimeter test (KS F ISO 5660-1), nylon carpet samples were ignited most easily. In ignition ability or initial flammability, NW carpet samples showed the highest value. In heat release rate (HRR), fire intensity, PP carpet samples were larger than any other samples. Nylon carpet samples were the highest smoke production rate, while N/W carpet samples the lowest. The following were in mass loss rates: NW > wool > nylon > PP > PTT. CO (carbon monoxide) was one of the most toxic gases released from the combustion. PTT carpet samples gave rise to the highest CO concentration, while NW carpet samples the lowest. In addition, PP carpet samples caused the highest $CO_2$ (carbon dioxide) concentration, while NW carpet samples the lowest. Toxicity of the gas produced from carpet samples was determined by the mouse stop motion, and it resulted in the fact that the combustion gas of PTT carpet samples was more toxic than that of any other samples.

Application of Nylon Fiber for Performance Improvement of Recycled Coarse Aggregate Concrete (순환 굵은골재 사용 콘크리트의 성능향상을 위한 나일론 섬유의 적용성 연구)

  • Lee, Seung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.785-792
    • /
    • 2017
  • In recent times, the lack of good quality natural aggregate has led to the alternative use of recycled aggregate. However, the adhered mortars in recycled aggregate lower the performance of the concrete, such as by reducing its strength and causing deterioration and cracking. In this study, the effects of nylon fiber (NF) on the mechanical and durable performance of recycled coarse aggregate concrete (RAC) were experimentally examined. Concrete specimens with natural coarse aggregate (NA) or RA were produced by adding 0, 0.6 and $1.2kg/m^3$ of NF. Various mechanical properties and the durability of the RAC were measured and compared with those of the NAC. In addition, in order to observe the hydrates and ITZ, SEM observations were made of the 28-day concrete samples. From the test results, as expected, it was found that the RAC exhibited lower performance than the NAC. However, the addition of NF to the concrete was effective in significantly enhancing the performance of the RAC due to the bridge effect of the NF.

Dyeing Properties of Ultrafine Nylon Fiber and PU Mixture Fabric (나일론 극세사와 PU 복합소재의 염색 특성)

  • Lee, Hyo-Young;Lee, Seung-Kwan;Kim, Sung-Dong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.4-4
    • /
    • 2011
  • 본 연구에서는 해도형 나일론 극세사 제품의 알칼리 용출 및 염색특성에 대한 고찰과 인공피혁, 스웨이드 조직 편물 등의 목적으로 함께 쓰이게 될 폴리우레탄과의 혼방 제품의 염색성 향상에 대한 연구를 진행하였다. 먼저, 해도형 나일론 극세사의 알칼리 용출거동을 확립하기 위해 NaOH 농도 및 온도에 따른 감량 특성을 확인하였으며, Red 색상의 산성염료와 반응성 염료 타입에 따른 염색특성 및 세탁 견뢰도 등을 고찰하였다. 또한, 폴리우레탄의 염착성을 향상시키기 위해 폴리우레탄 합성시 고분자 말단에 아민기를 함유하는 시료에 대한 염색성을 고찰하고, 폴리우레탄 함침 소재로서 쓰이는 인공피혁을 제조하여 염색 특성을 알아보았다. 해당 연구를 통하여 다음과 같은 결과를 얻을 수 있었다. 해도형 초극세사의 알칼리 용출의 경우 $90^{\circ}C$에서 30분 유지시키는 것이 가장 적절한 조건이었으며, pH에 따른 염색성의 경우 레벨링 타입 염료와 반응성 염료의 경우 4~5, 밀링 타입과 함금속 염료의 경우는 5~6정도의 pH에서 우수한 염색성을 나타내었다. 산성염료의 경우 염색온도와 시간이 증가함에 따라 초극세사에 염착된 염료들은 이면의 일반 나일론사로 이동하는 현상이 증가하였지만 반응성 염료의 경우는 이러한 이염 현상이 나타나지 않았다. 한편, 농도가 증가함에 따라 산성염료는 우수한 빌드업성을 나타내는데 반해 반응성 염료는 4% owf이상에서는 염착량이 증가하지 않았으나, 세탁 견뢰도의 경우 반응성 염료로 염색된 시료가 가장 우수한 견뢰도를 나타내었다. 그리고 앞선 모든 염색실험에 있어서 일반 나일론사보다는 초극세사의 염착률이 더 높았고, 겉보기 색농도는 낮게 나타나는 현상을 확인할 수 있었다. 한편, 나일론/폴리우레탄 혼방제품에서 쓰이는 일반적인 폴리우레탄(RPU)과 아민 함량이 높은 폴리우레탄(APU)의 염색성을 알아본 결과 APU의 염색성이 훨씬 우수하였고, RPU에서 나타나는 현상인 염색의 진행에 따른 염료의 탈리가 나타나지 않았으며 견뢰도 또한 우수하였다. 인공피혁의 염색에서는 함침에 사용된 폴리우레탄 수지의 구조에 따라 염색성이 달라지는 현상을 확인하였으며, 특히 반응성 염료를 사용할 경우 인공피혁에서 일반적으로 문제가 되는 견뢰도 저하의 현상이 나타나지 않았다.

  • PDF

Electrical Properties and Electromagnetic Shielding Effectiveness of Milled Carbon Fiber/Nylon Composites (분쇄형 탄소 섬유/나일론 복합재료의 전기적 성질과 전자파 차폐 효율)

  • 김창제;최형도;서광석;윤호규
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.201-209
    • /
    • 2003
  • DC and AC electrical conductivity and electromagnetic interference shielding effectiveness of milled carbon fiber/nylon composites were investigated with the kind of nylon matrix. Percolation transition at which the conductivity is sharply increased was observed at about 7 vol% of milled carbon fiber. Nylon 46 as a matrix was more effective to obtain high electrical conductivity than nylon 6, and the difference in conductivity was occurred by the treatment of coupling agent. Frequency dependence of AC conductivity could be explained by relaxation phenomenon at just below percolation and resonance phenomenon at 40 vol% of carbon fiber, respectively. Negative temperature coefficient phenomenon was found in all composites. Electromagnetic interference shielding effectiveness was increased with the concentration of carbon fiber. At a high conductivity region the return loss was more dominant to the total shielding effectiveness than the absorption loss.

Performance of Recycled Coarse Aggregate Concrete with Nylon Fiber (나일론 섬유를 적용한 순환 굵은골재 콘크리트의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.28-36
    • /
    • 2019
  • The adhered mortars in recycled aggregate may lower the performance of the concrete, such as by reducing in strength and durability, and cracking. In the present study, the effects of nylon fiber (NF) on the mechanical and durable properties of 100% ordinary portland cement (OPC) and 50% ground granulated blast furnace slag (GGBFS) concretes incorporating recycled coarse aggregate (RA) were experimentally investigated. Concrete was produced by adding 0 and $0.6kg/m^3$ of NF and then cured in water for the predetermined period. Measurements of compressive and split tensile strength, water permeable pore and total charge passed through concrete were carried out, and the corresponding test results were compared with those of concrete incorporating crushed coarse aggregate (CA). In addition, the microstructures of 28-day concretes were observed by using SEM technique. Test results revealed that the RA concrete showed lower performance than CA concrete because of the adhered mortars in RA. However, it was obvious that the addition of NF in RA concrete was much effective in enhancing the performance of the concretes due to the bridge effect from NF. In particular, the application of NF2 (19 mm) exhibited a somewhat beneficial effect compared with concrete incorporating NF1 with respect to mechanical properties, especially for RA concrete.