• 제목/요약/키워드: 나비어-스톡스

검색결과 113건 처리시간 0.03초

NACA0012 천이 유동의 저속 공력 특성 해석 (LOW-SPEED AERODYNAMIC CHARACTERISTIC OF TRANSITION FLOW OVER THE NACA0012)

  • 전상언;박수형;김상호;변영환;정경진;강인모
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.1-8
    • /
    • 2010
  • Laminar separation bubble and transitional flow over the NACA0012 are investigated at a moderate range of Reynolds numbers. A Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for the NACA0012 airfoil. Results of transition onset point and the length are compared well with experimental data and Xfoil prediction. The present RANS results show at high angles of attack better agreement with experimental data than Xfoil results using the boundary layer equations.

반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계 (DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION)

  • 이상문;김광용
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

난류열전달 증진을 위한 리브형상의 수치최적화 (Numerical Optimization of Rib Shape to Enhance Turbulent Heat Transfer)

  • 김선수;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.304-308
    • /
    • 2000
  • This paper presents a numerical optimization method to design geometric shape of streamwise periodic ribs mounted on one of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The golden section method is used for the one dimensional search. The optimization is based on Wavier-Stokes analysis of turbulent forced convection with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib is chosen as a design variable. The object function is defined as an inverse of average Nusselt number. An optimum shape of the rib has been obtained with reasonable computing time.

  • PDF

단단 축류 터보기계의 유동해석을 위한 계산격자점 생성 프로그램의 개발 및 적용 (Computational Grid Generator for Flow Analysis of Single Stage Axial Turbomachinery with Its Applications)

  • 정희택;박준영;백제현
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.28-37
    • /
    • 2000
  • An integrated grid generation has been developed for a Navier-Stokes simulation of flow fields inside multistaged turbomachinery The internal grids are generated by the combination of algebraic and elliptic methods. The interactive mode of the present system is coupled efficiently with the design results and flow solvers. Application to several types of axial-flow turbomachines was demonstrated to be reliable and practical as the pre-processor of the computational fluid engineering for gas turbine engines.

  • PDF

기울어진 타원형 딤플이 부착된 냉각 유로에 대한 열전달 성능해석 (HEAT-TRANSFER ANALYSIS OF A COOLING CHANNEL WITH INCLINED ELLIPTICAL DIMPLES)

  • 김현민;문미애;김광용
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with a parametric study on inclined elliptical dimples to enhance heat transfer in a channel. Three-dimensional Reynolds-averaged Naiver-Stokes equations are solved to estimate flow and heat transfer in dimpled channel. As turbulence closure, the low-Re shear stress transport model is employed. Two non-dimensional geometric variables, dimple ellipse diameter ratio and angle of main diameter to flow direction are selected for the parametric study. The inclined elliptical dimples show higher heat-transfer performance but with higher pressure drop compared to the circular dimples. And there is an optimum inclination angle that gives the maximum heat transfer.

축류팬의 비정상 유동장 및 유동소음의 수치 해석 (NUMERICAL ANALYSIS OF UNSTEADY FLOW FIELD AND AEROACOUSTIC NOISE OF AN AXIAL FLOW FAN)

  • 김욱;허남건;전완호
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.60-66
    • /
    • 2010
  • Unsteady Reynolds Averaged Navier-Stokes(URANS) and Large Eddy Simulation(LES) simulation of an axial flow fan are calculated upon same conditions and computational grids in order to study aeroacoustic noise of an axial flow fan numerically. Results of computed performance and predicted noise are compared with those of measurement. Both performances show accurate results with a significant difference of less than 5%. However, noise of LES result is more close to measured noise qualitatively than URANS. Levels of tonal noises of both LES and URANS are quite similar with those of measured at BPF(Blade Passing Frequency) in sound spectrum. However, as leading edge separation and tip vortex shedding phenomena of LES are showed more clearly than those of URANS, sound level of broadband noise of LES corresponds better than that of URANS, especially.

날개꼴의 형상 최적화를 위한 유동방정식 영향 연구 (Influence of Flow Solvers On Airfoil Shape Optimization)

  • 정희택;류병석
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.67-73
    • /
    • 1999
  • In the present paper, three types of the flow solvers were used to investigate the influence on the airfoil shape optimization. The adopted equations, i.e., Euler, thin layer Navier-Stokes and full Navier-Stokes ones. are solved using implicit LU-ADI decomposition scheme. The gradient projection method with the sinusoidal function was used as an optimization algorithm. The present numerical method was applied to the drag minimization problems under the initial shape of NACA0012 airfoils.

  • PDF

유체진동기의 형상 변화가 성능에 미치는 영향 (EFFECTS OF FLUIDIC OSCILLATOR GEOMETRY ON PERFORMANCE)

  • 정한솔;김광용
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.77-88
    • /
    • 2016
  • A parametric study on a fluidic oscillator was performed numerically in this work. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations were solved to analyze the flow in the fluidic oscillator. As turbulence closure, $k-{\varepsilon}$ model was employed. Validation of the numerical results was performed by comparing numerical results with experimental data for frequency of the oscillation. The parametric study was performed using five geometric parameters. Performance of the fluidic oscillator was evaluated in terms of velocity ratio and pressure drop. The results show that the inlet channel width and the distance between splitters are important factors in determining the performance of the fludic oscillator.

가중평균대리모델을 사용한 천음속 압축기 블레이드 최적화 (Blade Optimization of a Transonic Compressor Using a Multiple Surrogate Model)

  • 압두스 사마드;최재호;김광용
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.317-326
    • /
    • 2008
  • The main purpose of the present study is to perform shape optimizations of transonic compressor blade in order to enhance its performance. In this study, the Latin hypercube sampling of design of experiments and the weighted average surrogate model with the help of a gradient based optimization algorithm are used within design space by the lower and upper limits of each design variable and for finding optimum designs, respectively. 3-D Reynolds-averaged Navier-Stokes solver is used to evaluate the objective functions of adiabatic efficiency and pressure ratio. Six variables from lean and airfoil thickness profile are selected as design variables. The results show that the adiabatic efficiency is enhanced by 1.43% by efficiency optimization while the pressure ratio is increased very small, and pressure ratio is increased by 0.24% by pressure ratio optimization.

난류열전달 향상을 위한 엇갈린 리브가 부착된 열전달면의 형상최적설계 (Shape Optimization of Heat Transfer Surfaces with Staggered Ribs To Enhance Thrbulent Heat Transfer)

  • 김홍민;김광용
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1351-1359
    • /
    • 2003
  • This study presents a numerical procedure to optimize shape of streamwise periodic ribs mounted on both of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The response surface method is used as an optimization technique. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib, rib height-to-channel height ratio and rib pitch to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been obtained for the range of 0.02 to 0.1 of weighting factor.