• Title/Summary/Keyword: 나눗셈 계산법

Search Result 8, Processing Time 0.02 seconds

On Teaching Algorithm for Whole-number Division in Measurement and Partition Contexts: Analysis of Korean Math Textbooks and Teachers' Guidebooks (포함제와 등분제 맥락에서 자연수 나눗셈 계산법 지도의 문제)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.3
    • /
    • pp.395-411
    • /
    • 2013
  • There are two concepts of division: measurement division and partitive or fair-sharing division. Students are expected to understand comprehensively division algorithm in both contexts. Contents of textbooks and teachers' guidebooks should be suitable for helping students develop comprehensive understanding of algorithm for whole-number division in both contexts. The results of the analysis of textbooks and teachers' guidebooks shows that they fail to connect two division contexts with division algorithm comprehensively. Their expedient and improper use of two division contexts would keep students from developing comprehensive understanding of algorithm for whole-number division. Based on the results of analysis, some ways of improving textbooks and teachers' guidebooks are suggested.

  • PDF

Quotitive Division and Invert and Multiply Algorithm for Fraction Division (분수 포함제와 제수의 역수 곱하기 알고리즘의 연결성)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.521-539
    • /
    • 2016
  • The structures of partitive and quotitive division of fractions are dealt with differently, and this led to using partitive division context for helping develop invert-multiply algorithm and quotitive division for common denominator algorithm. This approach is unlikely to provide children with an opportunity to develop an understanding of common structure involved in solving different types of division. In this study, I propose two approaches, measurement approach and isomorphism approach, to develop a unifying understanding of fraction division. From each of two approaches of solving quotitive division based on proportional reasoning, I discuss an idea of constructing a measure space, unit of which is a quantity of divisor, and another idea of constructing an isomorphic relationship between the measure spaces of dividend and divisor. These ideas support invert-multiply algorithm for quotitive as well as partitive division and bring proportional reasoning into the context of fraction division. I also discuss some curriculum issues regarding fraction division and proportion in order to promote the proposed unifying understanding of partitive and quotitive division of fractions.

Design of Iterative Divider in GF(2163) Based on Improved Binary Extended GCD Algorithm (개선된 이진 확장 GCD 알고리듬 기반 GF(2163)상에서 Iterative 나눗셈기 설계)

  • Kang, Min-Sup;Jeon, Byong-Chan
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.145-152
    • /
    • 2010
  • In this paper, we first propose a fast division algorithm in GF($2^{163}$) using standard basis representation, and then it is mapped into divider for GF($2^{163}$) with iterative hardware structure. The proposed algorithm is based on the binary ExtendedGCD algorithm, and the arithmetic operations for modular reduction are performed within only one "while-statement" unlike conventional approach which uses two "while-statement". In this paper, we use reduction polynomial $f(x)=x^{163}+x^7+x^6+x^3+1$ that is recommended in SEC2(Standards for Efficient Cryptography) using standard basis representation, where degree m = 163. We also have implemented the proposed iterative architecture in FPGA using Verilog HDL, and it operates at a clock frequency of 85 MHz on Xilinx-VirtexII XC2V8000 FPGA device. From implementation results, we will show that computation speed of the proposed scheme is significantly improved than the existing two approaches.

Design of a Bit-Serial Divider in GF(2$^{m}$ ) for Elliptic Curve Cryptosystem (타원곡선 암호시스템을 위한 GF(2$^{m}$ )상의 비트-시리얼 나눗셈기 설계)

  • 김창훈;홍춘표;김남식;권순학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1288-1298
    • /
    • 2002
  • To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.

Direct Decoding Algorithm of (128, 124) Reed-Solomon Codes for ATM adaptation laye and Its VHDL Simulation (ATM 적응계층에 적용 가능한 (128, 124) Reed Solomon 부호의 직접복호법 및 VHDL 시뮬레이션)

  • 김창규
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.1
    • /
    • pp.3-11
    • /
    • 2000
  • AAL-1에서는 (128, 124) Reed-Solomon부호를 사용한 인터리버 및 디인터리버에 의해 ATM 셀에서 발생하는 오류를 정정하고 있다. Reed-Solomon부호의 복호법 중 직접복호법은 오류위치다항식의 계산없이 오류위치와 오류치를 알 수 있으며 유한체 GF(2m)의 표현에서 정규기저를 사용하면 곱셈과 나눗셈을 단순한게 비트 이동만으로 처리할 수 있다. 직접복호법과 정규기저를 사용하여 ATM 적응계층에 적용 가능한 (128, 124) Reed-Solomon부호의 복호기를 설계하고 VHDL로 시뮬레이션 하였으며 이 복호기는 동일한 복호회로에 의해 둘 또는 하나의 심벌에 발생한 오류를 정정할 수 있다.

A Study on Comparison between the Propagation of Uncertainty by GUM and Monte-Carlo Simulation (측정 불확도 표현 지침서(GUM)와 Monte-Carlo Simulation에 의한 불확도 전파 결과의 비교 연구)

  • Jungkee Shu;Hyungsik Min;Minsu Park;Jin-Chun Woo;Jongsang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • The expanded uncertainties calculated by the application of GUM -approximation and Monte-Carlo simulation were compared about the model equation of one-point calibration which is widely used for the measurements and chemical analysis. For the comparisons, we assumed a set of artificial data at the various level of concentration and dispersion of t or normal distribution. Mistakes of more then 50 % was revealed at the values calculated by GUM-approximation in comparison with those of Monte-Carlo simulation because of the excess dispersion from t-distribution and non-linearity by division in the equation. In contrary, the mistake of calculation due to non-linearity of the equation was not observed in the level of detection limits with the equation of one-point calibration, because of the relatively large values of uncertainty in response.

Counting Rods and Abacus (산대셈과 수판셈)

  • Her Min
    • Journal for History of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.49-66
    • /
    • 2005
  • We briefly survey the history of abacus and counting rods which had been most widespread devices for arithmetical calculations. And we explain and compare the methods and principles of calculation on the abacus and counting rods. Only multiplication and division are presented here with examples. In these course we can see that the principles of calculation on the abacus are inherited from that of calculation on the counting rods. We also discuss the educational value of the abacus.

  • PDF

An Exact Division Algorithm for Change-Making Problem (거스름돈 만들기 문제의 정확한 나눗셈 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.185-191
    • /
    • 2022
  • This paper proposed a division algorithm of performance complexity $O{\frac{n(n+1)}{2}}$ for a change-making problem(CMP) in which polynomial time algorithms are not known as NP-hard problem. CMP seeks to minimize the sum of the xj number of coins exchanged when a given amount of money C is exchanged for cj,j=1,2,⋯,n coins. Known polynomial algorithms for CMPs are greedy algorithms(GA), divide-and-conquer (DC), and dynamic programming(DP). The optimal solution can be obtained by DP of O(nC), and in general, when given C>2n, the performance complexity tends to increase exponentially, so it cannot be called a polynomial algorithm. This paper proposes a simple algorithm that calculates quotient by dividing upper triangular matrices and main diagonal for k×n matrices in which only j columns are placed in descending order of cj of n for cj ≤ C and i rows are placed k excluding all the dividers in cj. The application of the proposed algorithm to 39 benchmarking experimental data of various types showed that the optimal solution could be obtained quickly and accurately with only a calculator.