• Title/Summary/Keyword: 나노 트라이볼로지

검색결과 97건 처리시간 0.021초

단결정 실리콘 웨이퍼의 내마모성 및 내식성 향상을 관한 연구 (Enhancement of Wear and Corrosion Resistances of Monocrystalline Silicon Wafer)

  • 우르마노프 바흐티요르;노준석;편영식;아마노프 아웨즈한
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.176-182
    • /
    • 2019
  • The primary objective of this study is to treat a monocrystalline silicon (Si) wafer having a thickness of $279{\mu}m$ by employing the ultrasonic nanocrystal surface modification (UNSM) technology for improving the efficiency and service life of nano-electromechanical systems (NEMSs) and micro-electromechanical systems (MEMSs) by enhancing of wear and corrosion resistances. The wear and corrosion resistances of the Si wafer were systematically investigated before and after UNSM treatment, wherein abrasive, oxidative and spalling wear mechanisms were applied to the as-received and subsequently UNSM-treated Si wafer. Compared to the asreceived state, the wear and corrosion resistances of the UNSM-treated Si wafer are found to be enhanced by about 23% and 14%, respectively. The enhancement in wear and corrosion resistances after UNSM treatment may be attributed to grain size refinement (confirmed by Raman spectroscopy) and modified surface integrity. Furthermore, it is observed that the Raman intensity reduced significantly after UNSM treatment, whereas neither the Raman shift nor new phases were found on the surface of the UNSM-treated Si wafer. In addition, the friction coefficient values of the as-received and UNSM-treated Si wafers are found to be about 0.54 and 0.39, respectively. Hence, UNSM technology can be effectively incorporated as an alternative mechanical surface treatment for NEMSs and MEMSs comprising Si wafers.

액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가 (Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification)

  • 박선영;강현규;변도영;조대현
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.

전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구 (A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process)

  • 이찬;김지민;김형모
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Thermal wetting 현상이 탄소나노튜브-금속박막 계면의 응착력에 미치는 영향에 관한 분자 시뮬레이션 연구 (A Molecular Simulation on the Adhesion Control of Metal Thin Film-Carbon Nanotube Interface based on Thermal Wetting)

  • 이상훈;김현준
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.8-12
    • /
    • 2023
  • This study presents a molecular simulation of adhesion control between carbon nanotube (CNT) and Ag thin film deposited on silicon substrate. Rough and flat Ag thin film models were prepared to investigate the effect of surface roughness on adhesion force. Heat treatment was applied to the models to modify the adhesion characteristics of the Ag/CNT interface based on thermal wetting. Simulation results showed that the heat treatment altered the Ag thin film morphology by thermal wetting, causing an increase in contact area of Ag/CNT interface and the adhesion force for both the flat and rough models changed. Despite the increase in contact area, the adhesion force of flat Ag/CNT interface decreased after the heat treatment because of plastic deformation of the Ag thin film. The result suggests that internal stress of the CNT induced by the substrate deformation contributes in reduction of adhesion. Contrarily, heat treatment to the rough model increases adhesion force because of the expanded contact area. The contact area is speculated to be more influential to the adhesion force rather than the internal stress of the CNT on the rough Ag thin film, because the CNT on the rough model contains internal stress regardless of the heat treatment. Therefore, as demonstrated by simulation results, the heat treatment can prevent delamination or wear of CNT coating on a rough metallic substrate by thermal wetting phenomena.

α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구 (A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations)

  • 정예리;김진호;이태일
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

표면처리에 의한 유기발광소자(OLED)용 Ag 전극의 Nano-size 효과 연구 (Nano-size Study of Surface-modified Ag Anode for OLEDs)

  • 김주영;김수인;이규영;김형근;전재혁;정윤종;김무찬;이종림;이창우
    • 한국진공학회지
    • /
    • 제21권1호
    • /
    • pp.12-16
    • /
    • 2012
  • Top-Emitting OLED (Organic Light-Emitting Diode) 디스플레이에서는 반사율이 가장 높은 Ag (silver) 박막이 쓰이고 있지만, 소자에서 요구되는 일함수(work function)가 상대적으로 낮기 때문에 전극과 유기물간에 에너지 장벽이 발생하여 발광효율을 낮추는 요인이 되고 있다. 본 논문에서는 Ag 전극의 일함수를 높이기 위한 연구를 진행하였으며, 박막 형태의 Ag 전극에 대하여 nanotribology 접근법으로 연구를 실행하였다. Ag는 rf magnetron sputter를 이용해 glass 위에 증착한 후 furnace에서 $300^{\circ}C$, 30분간 대기 중에서 열처리하였고, 또 다른 시료는 표면에 산소 상압플라즈마로 처리 시간(30, 60, 90, 120s)을 각기 다르게 하여 시료를 제조하였다. Ag 전극을 nanoindentation을 통해 국부 영역에 대한 물리적 특성의 변화를 측정하였고, Kelvin probe force microscopy을 이용해 시료 표면의 포텐셜을 측정했다. 그 결과 열처리한 시료의 포텐셜값은 가장 크게 증가하였지만 균일도가 낮아졌다. 120s 플라즈마 처리한 시료는 불완전한 산화막의 생성으로 인해 탄성계수 및 경도값과 박막의 Weibull modulus를 극히 낮게 만들었지만, 60s, 90s 플라즈마 처리는 시료의 균일도를 높이고 또한 포텐셜을 증가시켜 T-OLED 성능 개선에 좋은 영향을 미치게 될 것이다.

HIPS 복합재의 전기적 및 마모 특성에 미치는 다중벽 탄소나노튜브의 영향 (Effects of Multi-walled Carbon Nanotubes on Electrical and Wear Characteristics of High Impact Polystyrene Composites)

  • 정연우;김경식;이현우;정만우;이재혁;김재현;이학주;김광섭
    • Tribology and Lubricants
    • /
    • 제31권3호
    • /
    • pp.95-101
    • /
    • 2015
  • Carbon nanotubes (CNTs) are widely used in polymer composites as filler materials to enhance various characteristics of the composites because of their remarkable mechanical, electrical, and thermal properties. In this study, we investigate the effects of MWCNTs on the electrical and wear characteristics of high-impact polystyrene (HIPS) composites, and compare the results with the effects of carbon black (CB). The HIPS composites are classified as Bare-HIPS, MWCNT-HIPS composites containing 2, 3, 4, and 5 wt% MWCNTs, and CB-HIPS containing 17 wt% CB. Electrical characteristics are evaluated by measuring the surface resistance using a 4-point probe. Wear characteristics are evaluated using the reciprocating wear test, and a chrome steel ball with a curvature of 6.3 mm is used as the counterpart. The results show that the addition of MWCNTs or CB can improve the electrical and wear characteristics of HIPS composites. In the case of MWCNT-HIPS composites, surface resistance, friction coefficient, and specific wear rate decrease as the concentrations of MWCNTs increase. Moreover, the addition of MWCNTs is more effective in improving the electrical and wear characteristics of HIPS composites compared to the addition of CB. To fabricate the HIPS composite with appropriate electrical and wear characteristics, more than 4 wt% MWCNTs is added to HIPS.