• 제목/요약/키워드: 나노 입자 특성

검색결과 1,236건 처리시간 0.028초

온열치료용 SiO2/Fe2O3 나노복합입자의 제조와 특성 (Synthesis and Characterization of SiO2/Fe2O3 Nanocomposite Particles for Hyperthermia)

  • 유지훈;이창우;이재성;좌용호
    • 한국재료학회지
    • /
    • 제13권9호
    • /
    • pp.613-618
    • /
    • 2003
  • The magnetic heating effect of $SiO_2$coated $ \Upsilon-Fe_2$$O_3$nanocomposite particle due to magnetic relaxational loss of superparamagnetic regime was investigated by measuring the generated heat from nanocomposite particles in alternative applied magnetic fields. The commercial $ \Upsilon-Fe_2$$O_3$nanoparticles were coated by SiO$_2$in water solution with TEOS and the synthesized nanocomposite powders and its magnetic properties were characterized and compared with the raw$ \Upsilon-Fe_2$$O_3$nanoparticles. The 10∼30 nm sized $ \Upsilon-Fe_2$$O_3$. nanoparticles were coated by 5 nm thickness of amorphous $SiO_2$film. The nanocomposite particle has very low Mr and Hc value showing superparamagnetic behavior The magnetic heating effect of nanocomposite particle on surface coating phase of $SiO_2$was discussed in terms of superparamagnetic behaviors of each particles, and their potential for hyperthermia application was evaluated.

고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상 (Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor)

  • 이은진;문종우;김양도;신평우;김영국
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

P3HT:PCBM 층 내 분산 가능한 금속 나노입자의 제조 및 이를 포함한 고분자 태양전지 소자의 특성에 관한 연구 (Synthesis of Highly Dispersible Metal Nanoparticles in P3HT:PCBM Layers and Their Effects on the Performance of Polymer Solar Cells)

  • 김민지;최규채;김영국;김양도;백연경
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.179-184
    • /
    • 2014
  • In this study, we prepare polymer solar cells incorporating organic ligand-modified Ag nanoparticles (O-AgNPs) highly dispersed in the P3HT:PCBM layer. Ag nanoparticles decorated with water-dispersible ligands (WAgNPs) were also utilized as a control sample. The existence of the ligands on the Ag surface was confirmed by FT-IR spectra. Metal nanoparticles with different surface chemistries exhibited different dispersion tendencies. O-AgNPs were highly dispersed even at high concentrations, whereas W-AgNPs exhibited significant aggregation in the polymer layer. Both dispersion and blending concentration of the Ag nanoparticles in P3HT:PCBM matrix had critical effects on the device performance as well as light absorption. The significant changes in short-circuit current density ($J_{SC}$) of the solar cells seemed to be related to the change in the polymer morphology according to the concentration of AgNPs introduced. These findings suggested the importance of uniform dispersion of plasmonic metal nanoparticles and their blending concentration conditions in order to boost the solar cell performance.

독시사이클린 나노입자가 함유된 치주용 키토산 스트립의 제조 및 특성 (Preparation and Characterization of Periodontal Chitosan Strip Containing Doxycycline Nanoparticle)

  • 송경숙;양재헌;김영일;정규호
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권4호
    • /
    • pp.233-239
    • /
    • 2001
  • Local drug delivery by using biocompatible polymers has been developed in the treatment of periodontitis for many years. In the field of dental therapy, doxycycline is usually a first choice because of its broad-spectrum antibiotic activity. The strip releases antibiotics for a week, and the polymer should be degradable after a week. In this study, we prepared and evaluated the chitosan strips and nanoparticle strips containing doxycycline hydrochloride, and studied their antiacterial activity, dissoultion, and degrability in vitro. The weight of cast strip containing a 5 mg of doxycycline hydrochloride and a 45 mg of chitosan polymer was $57.67{\pm}0.17\;mg$. The release rate of doxycycline hydrochloride from the strip was measured by HPLC. The drug released from chitosan strip and nanoparticle strip was shown to be $50\;{\mu}g/mL$ in first 24 hours. In antibacterial test showed growth inhibitory activity after 24 hrs anaerobic incubation. In vitro degradability showed demolished weight of $93.74{\pm}0.08%$ chitosan strip, $82.48{\pm}1.29%$ chitosan nanoparticle strip, $2.47{\pm}1.99%$ polycarprolactione strip (control). These results showed that, with this doxycycline hydrochloride strip, it is feasible to obtain a sustained release of the drug within the periodontal pocket for seven days which may be improve for local drug delivery system for treatment of periodontal disease.

  • PDF

기능성 항균 나노입자를 이용한 친환경성 특수지 제조에 관한 연구(II) (Study on Preparation of Environmental-Friendly Specialty Paper Using Functional Antibiotic Nano-Particle (II))

  • 조준형;이용원;김형진
    • 공업화학
    • /
    • 제18권1호
    • /
    • pp.17-23
    • /
    • 2007
  • 제지용 무기안료에 항균기능과 광촉매 탈취기능을 부여하기 위해 hybridization system을 이용하여 Ag 용액과 $TiO_2$로 표면 개질 처리하여 기능성 무기안료를 제조하고, 이를 이용하여 항균 및 탈취 기능을 갖는 특수지를 제조한 후 내항균 특성을 평가하였다. 내항균 평가로는 균의 생성여부를 눈으로 직접 확인 할 수 있는 halo test법, 균들의 생육 저하효과를 확인하는 방법인 inhibition growth test와 정균감소법을 사용하였다. 또한 제조된 항균기능성 특수지를 벽지용도로 적용하고자 하였으며, 내항균 평가 시 항균벽지 주위로 선명한 클리어 존이 형성되어 균의 성장 억제를 육안으로 확인할 수 있었다. 항균 및 탈취기능을 지니는 특수지의 휘발성 유기화합물 분해능 평가를 위한 benzene의 광촉매 분해 효율실험에서 반응시간 80min 동안 45~50%의 제거효율을 보였으며, 반응시간 30 min 정도에서 분해효율이 90% 이상 도달함을 알 수 있었다.

졸-겔법에 의한 Te 미립자 분산 SiO2 유리 박막의 제조와 특성 (Preparation and Characteristics of Te Fine Particles Doped SiO2 Glass Thin Films by Sol-gel Method)

  • 문종수;강봉상
    • 한국세라믹학회지
    • /
    • 제41권1호
    • /
    • pp.24-29
    • /
    • 2004
  • Te(Tellurium) 미립자를 $SiO_2$ 박막에 분산시켜 비선형 광학재료, 선택흡수막 및 투과막 등 새로운 기능성 재료로 활용하기 위하여 Te/$SiO_2$ 나노 목합체 박막을 제조하였다. 가수분해 조건을 변화시켰을 때 박막표면에 분산시킨 입자의 크기와 형상이 재료의 물성에 미치는 영향을 열처리 후의 시차중량분석과 엑스선 회절분석, 분광분석, 원자력간 현미경 그리고 전자현미경 관찰 등을 통하여 조사하였다. 제조된 박막의 광흡수 스펙트럼에스 Te 미립자의 플라즈마 공명에 의한 550nm 부근의 흡수피크가 관찰되어 비선형 광학성을 확인할 수 있었다. 박막의 표면 거칠기는 약 2.5nm 내외였고, Te 미립자의 크기는 약 5~10nm였다.

유체를 이용하여 위상응답을 제어하기 위해 잉크젯 프린팅으로 구현한 미세유체채널 복합 좌·우향 전송선로 (Fluidically-Controlled Phase Tunable Line Using Inkjet-Printed Microfluidic Composite Right/Left Handed Transmission Line)

  • 최성진;임성준
    • 한국전자파학회논문지
    • /
    • 제26권1호
    • /
    • pp.47-53
    • /
    • 2015
  • 본 논문은 미세유체채널에 채워진 유체를 이용하여 위상응답을 제어하는, 잉크젯 프린터로 인쇄된 미세유체채널 복합 좌 우향 전송선로(CRLH TL: Composite Right/Left Handed Transmission Line)를 제안한다. 제안된 CRLH TL은 종이 위에 은 나노입자 잉크를 이용하여 인쇄되었으며, Poly Methyl Methacrylate(PMMA)에 레이저 식각을 이용하여 제작된 미세유체채널은 잉크젯 프린터로 인쇄된 접착물질인 SU-8을 이용하여 CRLH TL 위에 부착되었다. 제안된 CRLH TL은 미세유체채널에 채워진 유체에 따라서 위상응답을 변화시킬 수 있으며, 미세유체채널에 각기 다른 유체가 흐를 때, 900 MHz에서 -10 dB 이하의 반사계수를 유지한 상태로 위상 지연, $0^{\circ}$ 위상, 위상 앞섬 특성을 모두 나타낼 수 있음을 확인하였다. 제안된 CRLH TL의 성능은 시뮬레이션 결과와 측정 결과를 통하여 성공적으로 증명되었다.

희토류 이온(Er/Yb)이 도핑된 LaPO4 나노입자의 합성과 발광특성 (Preparation and Luminescent Properties of LaPO4:Re (Re=Er, Yb) Nanoparticles)

  • 오재석;이택혁;석상일;정하균
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.270-275
    • /
    • 2004
  • Due to the luminescence by$ Er ^{ 3+}$ activator, Er-doped $LaPO_4$ powders can be applied for optical amplification materials. In this study, $LaPO_4$:Er nanoparticles were synthesized in solution system using a high-boiling coordinating solvent and their properties were investigated through various spectroscopic techniques. The nanoparticles were to take a single phase of monazite structure by a X-ray diffraction analysis and to have the 5-6 nm of particles size with narrow size distribution by a TEM. And it was confirmed by the EA and FT-IR analyses that the surfaces of nanoparticles are coordinated with the solvent molecules, which will possibly keep from agglomerating between LaPO$_4$:Er nanoparticles. In the emission spectrum of $LaPO_4$:Er nanoparticle at NIR region, on the other hand, it was measured that the emission intensity is very weak, which is due to the transition from $^4$$I_{(13/2)}$ to $^4$$I_{(15/2)}$ of $Er^{3+ }$ion. It was interpreted that the weak luminescence of $LaPO_4$:Er is originated from the hydroxyl groups adsorbed on the surfaces of the nanoparticles, because OH group acts as an efficient quencher for the $^4$$I_{(13/2)}$ \longrightarrow $^4$$I_{(15/2)}$ emission of $Er^{3+}$ activator. But the co-doping of Yb$^{3+}$ as a sensitizer in this nanoparticle results in the increase of the emission intensity at 1539 nm due to the effective energy transfer from $Yb^{3+}$ to $Er^{3+}$ . In addition, the synthesized nanoparticles exhibited good dispersibility with some polymers and effective luminescence at NIR region.n.

나노크기 Cu 분산입자를 갖는 Al2O3 다공체의 제조 및 미세조직 특성 (Synthesis and Microstructure of Porous Al2O3 with Nano-Sized Cu Dispersions)

  • 유호석;김안기;현창용
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.67-71
    • /
    • 2013
  • Porous $Al_2O_3$ dispersed with nano-sized Cu was fabricated by freeze-drying process and solution chemistry method using Cu-nitrate. To prepare porous $Al_2O_3$, camphene was used as the sublimable vehicle. Camphene slurries with $Al_2O_3$ content of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled to $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were subsequently generated by sublimation of the camphene during drying in air for 48 h. The green body was sintered in a furnace at $1400^{\circ}C$ for 1 h. Cu particles were dispersed in porous $Al_2O_3$ by calcination and hydrogen reduction of Cu-nitrate. The sintered samples showed large pores with sizes of about $150{\mu}m$; these pores were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores due to the traces of camphene left between the concentrated $Al_2O_3$ particles on the internal wall. EDS analysis revealed that the Cu particles were mainly dispersed on the surfaces of the large pores. These results strongly suggest that porous $Al_2O_3$ with Cu dispersion can be successfully fabricated by freeze-drying and solution chemistry routes.

금 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성 (Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Au Nanoparticles)

  • 김지영;김은경;김상섭
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.53-58
    • /
    • 2013
  • Superhydrophobic $SiO_2$ layers with a micro-nano hierarchical surface structure were prepared. $SiO_2$ layers deposited via an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decorated on the surface of the microscale-rough $SiO_2$ layers by use of the photo-reduction process with different intensities ($0.11-1.9mW/cm^2$) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequently resulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containing trichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical $SiO_2$ layers. The change in surface roughness factor was in good agreement with that observed for the water contact angle, where the surface roughness factor developed as a measure needed to evaluate the degree of surface roughness. The resulting $SiO_2$ layers revealed excellent repellency toward various liquid droplets with different surface tensions ranging from 46 to 72.3 mN/m. Especially, the micro-nano hierarchical surface created at an illumination intensity of $0.11mW/cm^2$ and illumination time of 60 sec showed the largest water contact angle of $170^{\circ}$. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micronano hierarchical $SiO_2$ layers were evaluated. The work of adhesion was estimated to be less than $3{\times}10^{-3}N/m$ for all the liquid droplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to the micro-nano hierarchical $SiO_2$ layers.