• Title/Summary/Keyword: 나노 입자 특성

Search Result 1,232, Processing Time 0.026 seconds

Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process (액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가)

  • Kim, Hee-Bong;Lee, Sang-Bok;Yi, Jin-Woo;Lee, Sang-Kwan;Kim, Yang-Do
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.93-97
    • /
    • 2012
  • Carbon nano fibers (CNFs) reinforced magnesium alloy (AZ91) matrix composites have been fabricated by liquid pressing process. In order to improve the dispersibility of CNFs and the wettability with magnesium alloy melt, CNFs were mixed with submicron sized SiC particles ($SiC_p$). Also, the mixture of CNFs and $SiC_p$ were coated with Ni by electroless plating. In liquid pressing process, AZ91 melts have been pressed hydrostatically and infiltrated into three reinforcement preforms of only CNFs, the mixture of CNFs and $SiC_p$ (CNF+$SiC_p$), and Ni coated CNFs and $SiC_p$ ((CNF+$SiC_p$)/Ni). Some CNFs agglomerates were observed in only CNFs reinforced composite. In cases of the composites reinforce with CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni, CNFs were dispersed homogeneously in the matrix, which resulted in the improvement of mechanical properties. The compressive strengths of CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni reinforced composites were 38% and 28% higher than that of only CNFs composite.

Diffraction Efficiency Change in PVA/AA Photopolymer Films by SeO2 and TiO2 Nano Particle Addition (PVA/AA계 광 고분자 필름의 SeO2 및 TiO2 나노 입자 첨가에 의한 회절 효율 변화)

  • Joe, Ji-Hun;Lee, Ju-Chul;Yoon, Sung;Nam, Seung-Woong;Kim, Dae-Heum
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.82-88
    • /
    • 2010
  • Photopolymer is a material for recording three dimensional holograms containing photo information. Photopolymer has been found to be a proper material due to many advantages such as high DE value, easy processing, and low price. Compositions of PVA, monomer, initiater and photosensitizer were determined by previous experiments and the compositions of $SeO_2$ and $TiO_2$ were considered as variable to find out the effects of $TiO_2$ on DE. The DE values were constant for the varying compositions of $TiO_2$ (0.1 mg~1.0 mg). In other words, $TiO_2$ is not directly effective on the DE values. Composition change experiments from $SeO_2$ 0.1 mg, $TiO_2$ 0.9 mg to $SeO_2$ 0.9 mg, $TiO_2$ 0.1 showed a maximum DE value of 73.75% at a component of $SeO_2$ 0.8 mg, $TiO_2$ 0.2 mg. It seemed that regardless of the amount of $TiO_2$, increasing the amount of $SeO_2$ gently increases DE`s. If nano particles are heavily added, transparent films could not be made due to the separation of particles by the solubility decrease. Photopolymer films could be made with high DE values for an extensive angle range if $TiO_2$ additions were kept minimum and $SeO_2$ additions were kept maximum.

Effect on the Formation of Fe3O4 with Ferrous Sulfate/Ferric Sulfate Molar Ratio and Precipitants (Fe3O4 생성에 미치는 황산제일철/황산제이철 몰비와 침전제의 영향)

  • Eom, Tae-Hyoung;Kim, Sam-Joong;An, Suk-Jin;Oh, Kyoung-Hwan;Suhr, Dong-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.157-162
    • /
    • 2011
  • The effect of ferrous/ferric molar ratio and precipitants on the formation of nano size magnetite particle was investigated by coprecipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide and ammonium hydroxide was used as a precipitant. Single phase magnetite was synthesized with all of experiment conditions (ferrous/ferric molar ratios and precipitants). Particle size was smaller, and particle size distribution was narrower when NaOH was used than $NH_4OH$ was used. The crystallinity and particle size was increased and narrower particle size distribution with increasing molar ratio ferrous/ferric sulfate with the same precipitant. Super paramagnetism could be obtained at all of experiment conditions. The highest saturation magnetization (72 emu/g) was obtained when the ferrous/ferric molar ratio was 2.5 and precipitant was used $NH_4OH$.

Preparation and Characterization of Tungsten Carbide Using Products of Hard Metal Sludge Recycling Process (초경합금 슬러지 재활용 공정 산물을 활용한 텅스텐 탄화물 제조 및 특성 평가)

  • Kwon, Hanjung;Shin, Jung-Min
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.19-25
    • /
    • 2022
  • In this study, tungsten carbide (WC) powder was prepared using a novel recycling process for hard metal sludge that does not use ammonium paratungstate. Instead of ammonia, acid was used to remove the sodium and crystallized tungstate, resulting in the formation of tungstic acid (H2WO4). The WC powder was successfully synthesized by the carbothermal reduction of tungstic acid through H2O decomposition, reduction of WO3 to W, and formation of WC. The carbon content and holding time at the carbothermal reduction temperature were optimized to remove free carbon from the WC powder. As a result, most of the free carbon in the WC powder prepared from sludge was removed, and the content of free carbon in the synthesized WC powder was lower than that in commercial WC powder. Moreover, the crystallite size of WC prepared from H2WO4 was much smaller than that of commercial micron-sized WC powder produced from APT. The small crystallite size of WC induces grain growth during the sintering of the WC-Co composite; thus, a WC-Co composite with large WC grains was fabricated using the WC powder prepared from H2WO4. The large WC grains affected the mechanical properties of the WC-Co composite. Further, due to the large grain size, the WC-Co composite fabricated from H2WO4 exhibited a higher toughness than that of the WC-Co composite prepared from commercial WC powder.

Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid (나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구)

  • Sanghyeon Ju;Ajeong Lee;Youngeun Shin;Teahoon Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • Because of the global pollution caused by plastic disposal, demand for eco-friendly transformation in the packaging industry is increased. As part of that, the utilization of polylactic acid (PLA) as a food packaging material is increased. However, it is necessary to improve the crystallinity of PLA by adding nucleating agents or to improve the modulus by adding fillers because of the excessive brittleness of the PLA matrix. Thus, the cellulose nanofiber (CNF) was fabricated and dried to obtain a powder form and applied to the CNF/PLA nanocomposite. The effect of CNF on the morphological, thermal, rheological, and dynamic mechanical properties of the composite was analyzed. We can confirm the impregnated CNF particle in the PLA matrix through the field emission scanning electron microscope (FE-SEM). Differential scanning calorimetry (DSC) analysis showed that the crystallinity of not annealed CNF/PLA nanocomposite was increased approximately 2 and 4 times in the 1st and 2nd cycle, respectively, with the shift to lower temperature of cold crystallization temperature (Tcc) in the 2nd cycle. Moreover, the crystallinity of annealed CNF/PLA nanocomposite increased by 13.4%, and shifted Tcc was confirmed.

Optical and Electrical Properties with Various Post-Heating Temperatures in the Al-Doped ZnO Thin Films by Sol-Gel Process (졸-겔법에 의해 제조된 Al-Doped ZnO 박막의 후열처리 온도에 따른 전기 및 광학적 특성)

  • Ko, Seok-Bae;Choi, Moon-Sun;Ko, Hyungduk;Lee, Chung-Sun;Tai, Weon-Pil;Suh, Su-Jeong;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.742-748
    • /
    • 2004
  • Isopropanol of low boiling point was used as a solvent to prepare Al-doped ZnO(AZO) thin films. A homogeneous and stable sol was made from Zn acetate a solute whose mole concentration was 0.7mol/$\iota$ and Al chloride as a dopant. Al-doped ZnO thin films were prepared by sol-gel method as a function of post-heating temperature from 500 to $700^{\circ}C$ and the optical and electrical properties were investigated. The c-axis orientation along (002) plane was enhanced with the increasing of post-heating temperature and the surface morphology of the films showed a homogeneous and nano-sized microstructure. The optical transmittance of the films post-heated below $650^{\circ}C$ was over $86\%$, but decreased at $700^{\circ}C$. The electrical resistivity of the thin films decreased from 73 to 22 $\Omega$-cm as the post-heating temperature increased up to $650^{\circ}C$, but increased greatly to 580 $\Omega$-cm at $700^{\circ}C$. XPS analysis indicated that the deterioration of electrical and optical properties was attributed to the precipitation of $Al_2O_3$ phase on the surface of AZO thin film. This result suggests that the optimum post-heating temperature to improve electrical and optical properties is $600^{\circ}C$.

The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method (공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2008
  • In this study, NiCoZn ferrites with the variation of sintering temperature and chemical composition were prepared by the coprecipitation. Microstructures Crystal structure of NiCoZn ferrites were analyzed by XRD and their electric magnetic characteristics were analyzed by LCR meter and their morphology observed by SEM. We identified that these powders have a typical NiCoZn spinel structure and nanoparticles average size of 40 nm. The impurity, the initial permeability and the Q factor value are the lowest of sintered NiCoZn ferrite at $1250^{\circ}C$. Also, we measured S-parameter for $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ which showed a maximum reflection loss of -3.1 dB at 6 GHz for the 2 mm thick sample. From this result, we found that the NiCoZn ferrite can be used in ferrite microwave-absorbing application at a higher frequency region (> 6 GHz).

Effects of Passivation Thin Films by Spray Coatings on Properties of Flexible CIGS Solar Cells (스프레이코팅법에 의한 패시베이션 박막이 플렉시블 CIGS 태양전지의 특성에 미치는 영향)

  • Lee, Sang Hee;Park, Byung Min;Kim, Ki Hong;Chang, Young Chul;Pyee, Jaeho;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.57-61
    • /
    • 2016
  • In order to protect the solar cells from the moisture and oxygen, we evaluated the electrical and optical properties for the $Cu(In,Ga)Se_2$ (CIGS) solar cells which were prepared by the spray coating method. Generally, the EVA (ethylene-vinyl acetate) films are laminated to protect the CIGS flexible solar cells, which results in a high cost process due to complicated devices. In this study, we tried to prepare the protection layers of the flexible CIGS flexible solar cells by using spray coating method instead of conventional laminating films in order to reduce the device weight as well as the process time. The CIGS solar cells with spray coating method showed an enhanced efficiency than the before treated sample (2.77% to 2.93%) and relatively proper water vapor transmission rate of the solar cells about 62.891 gm/[$m^2-day$].

A Study on Photocatalytic Decomposition of Methylene Blue by Crystal Structures of Anatase/Rutile $TiO_2$ (아나타제/루틸 $TiO_2$ 결정 구조에 의한 메틸렌 블루 광분해 특성 연구)

  • Hwang, Moon-Jin;Nguyen, Thanh Binh;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.148-152
    • /
    • 2012
  • Anatase and anatase/rutile $TiO_2$ samples were prepared at $HNO_3$/TTIP molar ratio of 0.1, 0.5, 1.0, and 1.5 to study the effects of the physical properties of $TiO_2$ on photocatalytic decomposition of methylene blue. The physical properties of the samples were measured with XRD, SEM, TEM, BET, FT-IR, and UV-vis spectroscopy. Anatase phase was observed at $HNO_3$/TTIP of 0.1 and anatase/rutile phases were observed at $HNO_3$/TTIP of 0.5~1.5. Rutile crystal phase, mesopore size between $TiO_2$ nanoparticles, and surface OH group on $TiO_2$ sample were gradually increased with increasing the molar ratio of $HNO_3$/TTIP and the residual methylene blue concentration before UV irradiation decreased from 78.0 to 53.3%. After UV irradiation, the residual methylene blue concentrations of the samples prepared at $HNO_3$/TTIP of 0.1, 0.5, 1.0, and 1.5 were 20, 14, 11, and 23%, respectively, and the sample prepared at $HNO_3$/TTIP of 1.0 showed the best photocatalytic ability.

Influence of Ca Reduction Process on the Properties of Nanocrystalline Nd-Fe-B Powders Prepared by a Thermochemical Process (열화학공정으로 제조된 나노결정형 Nd-Fe-B 분말의 특성에 미치는 Ca환원 공정의 영향)

  • Lee, Dae-Hoon;Jang, Tae-Suk;Yoo, J.-H.;Choi, C.-J.;Kim, B.-K.;Park, Byeong-Yeon
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2005
  • Nanocrystalline Nd-Fe-B powder was synthesized by a new thermochemical process that combined with past reduction-diffusion process and spray-dry process. In this process, Ca reduction process is vary important due to formation of hard magnetic$Nd_{2}Fe_{14}B$ phase from various oxides by Ca powder. Therefore, the final products are essentially affected a shape, size, and composition etc. of the Ca reduced powders. Ca reduction was performed to way that raw powders just mixed with Ca powder in proper ratio unlike to compress into compact. The powders after mixture-type Ca reduction mainly composited with $Nd_{2}Fe_{14}B$ phase even relativily low reaction temperature ($800^{\circ}C$) and all particle size of powder were distributed less than 1 ${\mu}m$ except for powder after Ca oxides as magnetic properties of powders after cake-type Ca reduction, with the consequence that high magnetic properties has been expected. The magnetic properties of powders prepared by mixture-type Ca ruduction, with the conseqence that high magnatic properties has been expected. The magnetic properties of powders prepared by mixture-type Ca reduction process showed $_iH_c$ = 5.9 kOe, $B_r$ = 5.5 kG, (BH)max = $Nd_{2}Fe_{14}B{\to}Nd_{2}Fe_{17}B$ decomposition by violent exothermic reaction during washing.