• Title/Summary/Keyword: 나노페라이트

Search Result 44, Processing Time 0.028 seconds

Exchange-coupling Interaction and Magnetic Properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 Nanocomposite Ferrite (BaFe12O19/Ni0.5Zn0.5Fe2O4 나노복합체 Ferrite의 Exchange-coupling 상호 작용과 자기 특성)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.81-85
    • /
    • 2014
  • Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanocomposite ferrite were prepared by sol-gel combustion method. Nanocomposite was calcined at temperature range of $600{\sim}900^{\circ}C$ for 1 h. According to the diffraction patterns, hard/soft nanocomposite was indicated to the coexistence of the magnetoplumbite structural $BaFe_{12}O_{19}$ and spinel $Ni_{0.5}Zn_{0.5}Fe_2O_4$ and agree with the standard data (JCPDS 10-0325). The particle size of nanocomposite turn out to be less than 90 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite ($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that for the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite. $(BH)_{max}$ is increased, generally.

PROPERTIES OF Ba-FERRITES PREPARED BY HIGH ENERGY MILLING (High Energy Milling으로 제조한 Ba 페라이트의 특성)

  • 남중희;김민상;김효태
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.116-117
    • /
    • 2002
  • High energy mi]ling은 mechanical alloying을 일컫는 분말 제조 공정으로서 금속 뿐 아니라 세라믹스 분말 합성에도 많이 응용되고 있으며, 입자크기의 나노화와 일반적인 세라믹 분말의 특성을 개질할 수 있다는 특징을 갖고 있어서 다양한 연구 결과가 보고되고 있다[1-2]. Ba 및 Sr 페라이트와 같은 육방정 페라이트는 보자력(high coercivity)이 높은 특성을 가지므로 영구자석용, 기록재료용 등으로 광범위하게 사용되어온 재료이다. 이와 같은 높은 보자력을 유지하기 위해서는 입자크기가 단자구 입경(<1 $\mu\textrm{m}$) 보다 작아야 하기 때문에, 초미립자 합성에 관한 많은 연구가 진행되어 왔다[3-4]. (중략)

  • PDF

Crystal structure and microstructure of Z-type hexaferrite (Ba, La)Co2Fe24O41 by molten salt synthesis (용융염 합성법에 의한 Z형 육방정 페라이트 (Ba, La)Co2Fe24O41계의 결정구조와 미세구조)

  • Lee, Do Hyeok;Kwon, Chae-Yeon;Moon, Kyoung-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.197-202
    • /
    • 2021
  • Synthesis of Z-type hexaferrite Ba3Co2Fe24O41 (Ba3Z) and Ba1.5La1.5Co2Fe24O41 (Ba1.5La1.5Z) powders were tried using molten salt synthesis after primary calcination. Ba3Z calcined at 1000℃ was formed with both M-type and Y-type hexaferrite, and then Z-type was obtained when sintered with molten salt at 1150℃ and 1200℃. In the case of Ba1.5La1.5Z calcined at 1000℃, however, M-type hexaferrite, CoFe2O4 (Spinel phase), and LaFeO3 were synthesized. As a result, Z-type hexaferrite was not synthesized after sintering with molten salt. In addition, the aspect ratio of the particles decreased as the sintering temperature increased with molten salt synthesis. To obtain a single-phase Ba1.5La1.5Z with a high aspect ratio, it is expected the raw materials have to calcine below the temperature of a spinel phase formation before sintering with molten salt.

Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors (자전 연소 전구체로 합성한 나노 크기 경/연 복합페라이트의 자기 특성)

  • Oh, Young Woo;Ahn, Jong Gyeon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • The goal of this research is the create novel magnets with no rare-earth contents, with larger energy product by comparison with currently used ferrites. For this purpose we developed nano-sized hard-type/soft-type composite ferrite in which high remanent magnetization (Mr) and high coercivity (Hc). Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ composite ferrites were prepared by sol-gel combustion method by use of glicine-nitrate and citric acid. Nanocomposite ferrites were calcined at temperature range $700-900^{\circ}C$ for 1h. According to the X-ray diffraction patterns and FT-IR spectra, single phase of NiZn-ferrite and Ba-ferrite were detected and hard/soft nanocomposite ferrite was indicated to the coexistence of the magnetoplumbite-structural $BaFe_{12}O_{19}$ and spinel-structural $Ni_{0.5}Zn_{0.5}Fe_2O_4$ that agreed with the standard JCPDS 10-0325 data. The particle size of nanocomposite turn out to be less than 120 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite ferrite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that of the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite, and $(BH)_{max}$ is increased slightly.

Magnetization and Magnetic Entropy Change in Superparamagnetic Co-Ferrite Nanoparticle (초상자성 코발트 페라이트 나노입자에 대한 자화 및 자기엔트로피 변화)

  • Ahn, Yang-Kyu;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.63-66
    • /
    • 2008
  • In order to the magnetization and magnetic entropy change for superparamagnetic ferrite nanoparticles, ultrafine cobalt ferrite particles were synthesized using a mircoemulsion method. The peak of X-ray diffraction pattern corresponds to a cubic spinel structure with the lattice constant 8.40 $\AA$. The average particle size, determined from X-ray diffraction line-broadening using Scherrer's, is 7.9 nm. The maximal magnetizations measured at 5 and 300 K are 24.3 emu/g and 17.2 emu/g, respectively. Superparamagnetic behavior of the sample is confirmed by the coincidence of the M vs. H/T plots at various temperatures. According to the thermodynamic theory, magnetic entropy change decreases with increasing temperature.