• Title/Summary/Keyword: 나노판

Search Result 102, Processing Time 0.029 seconds

Well-Aligned Nano-Sized Pores Using Aluminum Thin Film Fabricated by Aluminum Anodized Oxidation Method (알루미늄 박막을 이용하여 양극산화법으로 제작한 규칙적으로 정렬된 미세기공)

  • Han, Ga-Ram;Yun, Tae-Uk;Kang, Min-Ki;NamGung, Hyun-Min;Kim, Chang-Kyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.207-207
    • /
    • 2010
  • 알루미늄 양극산화 기술은 저가로 공정이 가능하고, 경제적이며 규칙적인 배열의 나노 미터 크기의 미세기공을 형성할 수 있다는 장점을 가지고 있다. 인가전압, 양극산화 용액의 종류, 용액의 농도 및 온도 등의 양극산화 조건을 변화시킴에 따라 나노 기공의 직경 및 길이, 밀도 조절이 용이하다. 알루미늄 판 (aluminum plate)을 이용한 양극산화 기술은 상대적으로 많이 알려져 있으나 알루미늄 박막을 이용한 양극산화기술은 아직도 확립되어 있지 않다. 본 실험에서는 실리콘 기판에 Al을 $5000{\AA}$$8000{\AA}$으로 증착시켜서 기판으로 이용하였다. 아주 얇은 두께의 Al은 작은 변화에도 민감하게 반응하기 때문에 공정 변수인 온도와 전압의 정밀한 제어가 되어야 나노 기공의 크기 조절이 가능한 것을 확인하였다.

  • PDF

The Development of Medical Device for Strengthening the Intervertebral Disc (추간판 강화용 의료기 개발)

  • Ryu, Suchak;Kim, Seunghyeon;Jo, Sungkwang;Shim, Keonoh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • This paper was designed to prevent intervertebral disc escape and treatment. we produced downsized lumbar traction bed at home and automated system depending on weight and muscle mass by using 3D print and Arduino to confirm the possibility of prototyping. Hence, we checked muscle mass 10 males in their 20s with different exercise conditions, and it shows that average muscle mass of group who exercised was 56.63kg, and non-exercise group was 50.8 kg. this is shows lumbar repetitive exercise can show the traction therapy effect can be seen traction therapy effect. In addition, we installed wooden doll substitute people with spring and test changing of length. Traction bed has the steps ranging from 1 to 4, in which the motor with torque and rpm, ranging from 4.7 to 5.5 kgf and from 4.5 to 5.3 rpm, respectively. The motor controlled with the voltage of Arduino was operated for the length of the spine to be stretched to 4-5 mm. As increasing the weight of the wooden doll by 10g, it was confirmed that the spring increased by 4-5 mm from the first step to the fourth step.

Thermoelectric Composites Based on Carbon Nanotubes and Micro Glass Bubbles (탄소나노튜브 및 마이크로 글래스 버블 기반 열전 복합재)

  • Kang, Gu-Hyeok;Seong, Kwangwon;Kim, Myungsoo;Kim, In Guk;Bang, In Cheol;Park, Hyung Wook;Park, Young-Bin
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, carbon nanotubes (CNTs) and micro glass bubbles (GBs) have been incorporated into a polyamide6 (PA6) matrix to impart thermoelectric properties. The spaces created in the matrix by GBs allows the formation of "segregated" CNT network. The tightly bound CNT network, if controlled properly, can serve as a conductive path for electron transport, while prohibiting phonon transport, which would provide an ideal configuration for thermoelectric applications. The CNTs and GBs were dispersed in a nylon-formic acid solution using horn sonication followed by coagulation in deionized water, and nanocomposite panels were fabricated using a hot press. The performance of nanocomposite panels was evaluated from thermal and electrical conductivities and Seebeck coefficient, and a thermoelectric figure of merit as high as 0.016 was achieved.

Study on Graphite/Polypropylene/Liquid Crystalline Polymer Composite for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 흑연/폴리프로필렌/액정고분자 복합 재료의 특성에 관한 연구)

  • Dhungana, Biraj;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3627-3632
    • /
    • 2015
  • We investigated mechanical, rheological and electrical properties of graphite/PP/LCP composites for a bipolar plate of the polymer electrolyte membrane fuel cell. The composites containing very low molecular weighted PP showed much higher electrical conductivity compared with other thermoplastics. This was attributed to the enhanced dispersion of graphite particles due to the low viscosity of the PP. The conductivity of the composites was increased in a great extent by incorporation of small amount of carbon nano tube (CNT). However, the acid treated CNT which contains oxygen atoms did not increase the conductivity of the composite. From this result, it is concluded that the CNT has higher affinity with non polar polymer. The composite with low molecular weighted PP provided good processability so that the composites can be processed by an injection molding while the mechanical strength is deficient compared to other polymers. In order to reinforce the low mechanical property, LCP/PP was used as a binder and the graphite/PP/LCP composite showed the higher conductivity and moderate mechanical strength maintaining suitable processability.

Annealing Effect on controlling Self-Organized Ag/Ti Nanoparticles on 4H-SiC Substrate (4H-SiC기판 위의 자기구조화된 Ag/Ti 나노입자 제어를 위한 열처리 분석)

  • Kim, So-Mang;OH, Jong-Min;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.177-180
    • /
    • 2016
  • The effect of varying thickness of Ag/Ti metal bilayer and annealing time have investigated for controlling self-organized nanoparticles (NPs) on 4H-SiC substrate. In addition, Glass and Si substrate which have different surface energy from SiC were fabricated for analyzing interaction of agglomeration. The results of FE-SEM indicated the different formation behaviors of NPs in various ranges of fabrication condition. The surface energy was measured by using a Contact Angle Analyzer. The formation of network-like NPs was observed on Glass and 4H-SiC, respectively, whereas it was not the case on Si substrates. It has been found that the size of NPs increases with decreasing surface energy, due to particle size-dependent hydrophilic properties of substrates. The different formation behavior was explained by using Young's equation for the contact angles between the metal and different substrates.

Periodically Aligned Metal Nanoparticle Array for a Plasmonic Absorber and Its Fabrication Technique (플라즈모닉 흡수체를 위한 금속 나노입자 주기구조 제작 기술)

  • Choi, Minjung;Ryu, Yunha;Bae, Kyuyoung;Kang, Gumin;Kim, Kyoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.361-365
    • /
    • 2017
  • In this paper, we demonstrate a facile fabrication technique for a periodically aligned metal nanoparticle array, for a narrow-band plasmonic absorber. The metal nanoparticles are fabricated by e-beam evaporation and heat treatment processes on top of a periodic aluminum groove template. The plasmonic absorber is constructed with the transferred metal nanoparticle array, sputtered 33-nm-thick $Al_2O_3$, and 200-nm-thick metal reflector layers on silicon substrate. 46-nm-diameter and 76-nm-lattice metal-nanoparticle-array-based plasmonic absorber has performed as a narrow-band absorber with a central wavelength of 572 nm and full width at half maximum (FWHM) of 109.9 nm.

Characterization research Cr-DLC films for improved corrosion and conductivity of Bipolar plate (분리판의 내식성 및 전도성 향상을 위한 Cr-DLC 박막 특성 연구)

  • Jeon, Ye-Seul;Lee, Na-Rae;Mun, Gyeong-Il;Lee, Seon-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.272-273
    • /
    • 2015
  • DLC는 고경도, 화학적 안정성 및 고내식성, 내마모성 및 낮은 마찰계수로 인하여 여러 산업분야의 표면처리기술로 적용되고 있다. 하지만 DLC의 절연특성은 전기 산업 분야에 적용 한계가 있다. 이번 연구에서는 DLC를 연료전지 중 PEMFC(고체산화물 연료전지)의 금속 분리판 표면처리에 적용시키고자 하였으며, 높은 전도성과 고내식성의 Me-DLC박막 제작을 목표로 하였다. Cr을 Buffer layer로 하고 Cr과 DLC를 동시에 증착한 Cr-DLC 박막을 제작하였다. Cr-DLC코팅의 기계적 특성을 확인하기 위하여 나노인덴터를 이용하여 경도 및 탄성률을 측정하였으며, ball-on disk를 이용하여 마찰계수를 확인하였다. 각 샘플들의 전기전도성을 확인하기 위하여 4-point probe system을 이용하여 측정하였으며, 부식 저항 특성을 확인하기 위하여 1mole $H_2SO_4$ + 2 ppm HF 분위기의 전해질 내에서 동전위 분극시험을 통한 내식성 테스트를 하였으며, XPS를 통하여 Cr-DLC박막내의 구조적 특성을 확인하였다.

  • PDF

Comparison of electric conductivity of nano composites for bipolar plate of PEM fuel cell (PEM 연료전지 분리판용 나노복합재의 전도성 비교)

  • Lee H.S.;Jung W.K.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1136-1139
    • /
    • 2005
  • As alternative materials for bipolar plate of PEM Fuel Cells, carbon composites were fabricated by compression molding. In this study, four types of nano particles, such as Carbon nanotubes, Carbon black, GX-15 and P-15 were mixed with epoxy resin to provide electric conductivity and structural properties. By increasing pressure during molding and volume ratio of nano particles, the physical contact among particles was improved resulting in increased electric conductivity. Surface resistance test showed, P-15 particles have the highest electric conductivity.

  • PDF

Physical and Electrical Properties of Nanocrystalline Carbon Films Prepared with Ti Concentration for Contact Strip Application of Electric Railway (전기철도 집전판 응용을 위한 Ti 나노금속 함량에 따른 나노결정 탄소박막의 물리적, 전기적 특성)

  • Park, Yong-Seob;Jung, Ho-Sung;Park, Chul-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1561-1564
    • /
    • 2012
  • In this work, we have fabricated the nanocrystalline carbon films by using unbalanced magnetron sputtering method with graphite and Ti targets for contact strip application of electrical railway. The power density of graphite target was fixed and the power density was increased for the increase of Ti concentration in TiC films. We investigated the hardness, surface roughness, contact angle, resistivity, HRTEM and XPS of TiC films with Ti concentration. The hardness and resistivity were improved with increasing Ti concentration. These results indicate that the improvement of hardness and resistivity is related to the increase of sp2 clusters in TiC films.

Development of Fabrication Process of Light Guiding Plate with Nanometer-Sized-Cylindrical Pattern Using Nano Imprint Lithography Method (나노 임프린트 리소그래피법에 의한 나노미터급 원기둥 패턴을 갖는 도광판의 제작 공정 개발)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.332-335
    • /
    • 2008
  • PMMA light guiding plate with nano pattern was fabricated by nano imprint lithography method. A silicon mold for electroplating of nickel was fabricated by conventional photolithography process. A nickel stamp for nano imprint lithography was fabricated by electroplating process using silicon mold. The nano imprint lithography was performed on PMMA plate at $140^{\circ}C$ under pressure of 20kN. The nano pattern on PMMA plate was investigated using FE-SEM. It is shown that the patterns were well transferred for several steps and the nano imprint lithography method could be applied for fabricating patterns of light guiding plate.