• Title/Summary/Keyword: 나노전자

Search Result 2,188, Processing Time 0.029 seconds

Thermal Stable Ni-silicide Utilizing Pd Stacked Layer for nano-scale CMOSFETs (나노급 CMOSFET을 위한 Pd 적층구조를 갖는 열안정 높은 Ni-silicide)

  • Yu, Ji-Won;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.10-10
    • /
    • 2008
  • Silicide is inevitable for CMOSFETs to reduce RC delay by reducing the sheet resistance of gate and source/drain regions. Ni-silicide is a promising material which can be used for the 65nm CMOS technologies. Ni-silicide was proposed in order to make up for the weak points of Co-silicide and Ti-silicide, such as the high consumption of silicon and the line width limitation. Low resistivity NiSi can be formed at low temperature ($\sim500^{\circ}C$) with only one-step heat treat. Ni silicide also has less dependence of sheet resistance on line width and less consumption of silicon because of low resistivity NiSi phase. However, the low thermal stability of the Ni-silicide is a major problem for the post process implementation, such as metalization or ILD(inter layer dielectric) process, that is, it is crucial to prevent both the agglomeration of mono-silicide and its transformation into $NiSi_2$. To solve the thermal immune problem of Ni-silicide, various studies, such as capping layer and inter layer, have been worked. In this paper, the Ni-silicide utilizing Pd stacked layer (Pd/Ni/TiN) was studied for highly thermal immune nano-scale CMOSFETs technology. The proposed structure was compared with NiITiN structure and showed much better thermal stability than Ni/TiN.

  • PDF

Fabric Mapping and Placement of Field Programmable Stateful Logic Array (Field Programmable Stateful Logic Array 패브릭 매핑 및 배치)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, the Field Programmable Stateful Logic Array (FPSLA) was proposed as one of the most promising system integration technologies which will extend the life of the Moore's law. This work is the first proposal of the FPSLA design automation flow, and the approaches to logic synthesis, synchronization, physical mapping, and automatic placement of the FPSLA designs. The synchronization at each gate for pipelining determines the x-coordinates of cells, and reduces the placement to 1-dimensional problems. The objective function and its gradients for the non-linear optimization of the net length and placement density have been remodeled for the reduced global placement problem. Also, a recursive algorithm has been proposed to legalize the placement by relaxing the density overflow of bipartite bin groups in a top-down hierarchical fashion. The proposed model and algorithm are implemented, and validated by applying them to the ACM/SIGDA benchmark designs. The output state of a gate in an FPSLA needs to be duplicated so that each fanout gate can be connected to a dedicated copy. This property has been taken into account by merging the duplicated nets into a hyperedge, and then, splitting the hyperedge into edges as the optimization progresses. This yields additional 18.4% of the cell count reduction in the most dense logic stage. The practicality of the FPSLA can be further enhanced primarily by incorporating into the logic synthesis the constraint to avoid the concentrated fains of gates on some logic stages. In addition, an efficient algorithm needs to be devised for the routing problem which is based on a complicated graph. The graph models the nanowire crossbar which is trimmed to be embedded into the FPSLA fabric, and therefore, asymmetric. These CAD tools can be used to evaluate the fabric efficiency during the architecture enhancement as well as automate the design.

Peel strengths of the Composite Structure of Metal and Metal Oxide Laminate (Metal과 Metal Oxidefh 구성된 복합구조의 Peel Strength)

  • Shin, Hyeong-Won;Jung, Taek-Kyun;Lee, Hyo-Soo;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.13-16
    • /
    • 2013
  • A lot of various researches have been going on to use heat spreader for LED module. Nano porous aluminum anodic oxide (AAO) applied LED, which is produced from anodization, is easy and economically advantageous. Convensional LED module is consist of aluminum/adhesive/copper circuit. The polymer adhesive in this module is used as heat spreader. However the thermal emission of LED component is degraded because of low heat conductivity of polymer and also reliability of LED component is reduced. Therefore, AAO in this work was applied to heat spreader of LED module which has higher heat conductivity compare to polymer. Bonding strength between AAO and copper circuit was improved with Ti/Cu seed layer by copper sputtering process (DBC) before the bonding. And this copper circuit has been fabricated by electro plating method. Peel strength of AAO and copper circuit in this work showed range between 1.18~1.45 kgf/cm with anodizing process which is very suitable for high power LED application.

Fabrication of Photocatalytic $TiO_2$ Thin Film Using Aerosol Deposition Method (Aerosol Deposition 법을 이용한 광촉매 $TiO_2$ 박막 제조)

  • Choi Byung-Kyu;Min Seok-Hong;Kim Jong-Oh;Kang Kyong-Tae;Choi Won-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.55-59
    • /
    • 2004
  • We fabricates the $TiO_2$ thin film from anatase phase $TiO_2$ powder having good photocatalytic property using aerosol deposition method at room temperature. Aerosol deposition method, which sprays an aerosol powder with ultrasonic velocity and deposits a thin film on substrate at low temperature, has the advantages of low thermal stress and low cost. To fabricate the $TiO_2$ thin film, the aerosol bath pressure and chamber pressure were 500 torr and 0.4 torr, respectively. The difference of aerosol bath pressure and chamber pressure accelerated the $TiO_2$ nano powder to ultrasonic velocity through the nozzle of $0.4 mm{\times}10 mm$ and $TiO_2$ thin film was finally formed. SS mesh with diameter of 50 mm was used as a substrate to apply the $TiO_2$ thin film to water quality purification. The raw powder was dehydrated for the good dispersion of $TiO_2$ powder. To suppress the formation of second particle, the powder was dispersed for 90 min in alcohol bath by ultrasonic treatment and desiccated. The grain size of $1 {\mu}m$ was observed in $TiO_2$ thin film deposited on SUS mesh by scanning electron microscopy (SEM). The anatase phase of $TiO_2$ thin film was also observed by X-ray diffraction (XRD) and the anatase phase of raw powder was nicely maintained after aerosol deposition. The results are applicable to water treatment filter having photocatalytic reaction.

  • PDF

Development of Location/Safety Tracking System for Construction Site Workers by Using MEMS Sensors (MEMS 센서를 활용한 건설현장 작업자 위치/안전 정보 추적 시스템 개발)

  • Kim, Jin-Young;Ahn, Sung-Soo;Kang, Joon-Hee
    • 전자공학회논문지 IE
    • /
    • v.49 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • Fast development of ubiquitous technology prompted the broadening of the related application area. Application of ubiquitous techniques and system into the construction sites may give us many benefits. There are always a lot of hazard situations in construction sites, and the falling is known to have the high accident rate. To prevent the falling, there has been a lot of efforts including safety education and use of safety gears. In this study, we designed, fabricated and tested a system that can monitor the worker's safety and location informations in real time by using the wireless technology of TOA and RSSI. We used ATmegal28 that is popular in the industrial equipments as MCU and NanoPan 5357 module from Nanotron and CC2500 chipset from TI for radio circuits. We also used 3-axis accelerometer and pressure MEMS sensors to obtain the environmental information, and therefore to aquire the informations of the worker's movement and altitude. We used Labview software from National Instrument to monitor and control the system. We developed the system to send the warning alarms to the server operator and the workers when the workers in the danger zone did not wear the safety hook.

Particle Behavior of Silver Nanoparticles Synthesized by Electrical Resistance Analysis (전기저항 분석을 통한 은나노 입자 합성 시의 입자거동 연구)

  • Yoon, Young Woo;Ryu, Si Hong;Yang, Sung Joo;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.531-538
    • /
    • 2015
  • This study examined the size and shape of the nano-silver particle through the analysis of electrical resistance when synthesizing nano-sized silver by using the chemical liquid reduction. Changes in particle behaviors formed according to the changes in electronic characteristics by electric resistance in each time period in the beginning of reduction reaction in a course of synthesizing the nano-silver particle formation were studied. In addition, analysis was conducted on particle behaviors according to the changes in concentration of $AgNO_3$ and in temperature at the time of reduction and nucleation and growth course when synthesizing the particles based on the particle behaviors were also examined. As the concentration of $AgNO_3$ increased, the same amount of resistance of approximately $5{\Omega}$ was increased in terms of initial electronic resistance. Furthermore, according to the result of formation of nuclear growth graph and estimation of slope based on estimated resistance, slops of $6.25{\times}10^{-3}$, $2.89{\times}10^{-3}$, and $1.85{\times}10^{-3}$ were derived from the concentrations of 0.01 M, 0.05 M, and 0.1 M, respectively. As the concentration of $AgNO_3$ increased, the more it was dominantly influenced by the nuclear growth areas in the initial phase of reduction leading to increase the size and cohesion of particles. At the time of reduction of nano-silver particle, the increases of initial resistance were $4{\Omega}$, $4.2{\Omega}$, $5{\Omega}$, and $5.3{\Omega}$, respectively as the temperature increased. As the temperature was increased into $23^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$, and $80^{\circ}C$, slopes were formed as $4.54{\times}10^{-3}$, $4.65{\times}10^{-3}$, $5.13{\times}10^{-3}$, and $5.42{\times}10^{-3}$ respectively. As the temperature increased, the particles became minute due to the increase of nuclear growth area in the particle in initial period of reduction.

Preparation of Silver Nanoparticles Using AgNO3 Precursor as Carrier for Olefin/Paraffin Separation and the Effect Analysis of NO3- (올레핀/파라핀 분리용 운반체로서 AgNO3 전구체를 활용한 은 나노입자 제조 및 NO3-의 효과 분석)

  • kim, Minsu;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.265-270
    • /
    • 2018
  • In previous studies, a poly(ethylene oxide)(PEO)/Ag nanoparicles (AgNPs)(precursor $AgBF_4$)/p-benzoquinone (p-BQ) composite membrane was prepared for olefin/paraffin separation and the performance of this composite membrane was maintained at a selectivity of 10 and a permeability of 15 GPU. However, since the price of $AgBF_4$ precursor is high, this study used $AgNO_3$ as a precursor of Ag nanoparticles which is competitive in terms of price. As a result, it was observed that the separation performance was not obtained because the existing $NO_3{^-}$ could surround AgNPs. In this study, we fabricated PEO, poly(vinyl alcohol)(PVA), and polyether block amide-1657 (PEBAX-1657) polymer composite membrane using electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) for separation performance even when $AgNO_3$ was used as a precursor of Ag nanoparticles. As a result, it was analyzed that the performance was not observed regardless of the influence of the polymer and the electron acceptor, indicating that the anion of the precursor plays a crucial role in the separation performance.

The Effect of the Addition of BZO Nanopowder in the YBCO PLD Targets on the Flux Pinning Properties of BZO-YBCO Thin Film (YBCO PLD 타겟에 BZO 나노분말 첨가에 따른 PLD-YBCO 박막의 자속고정 효과)

  • Song, K.J.;Ko, R.K.;Lee, Y.S.;Park, Y.M.;Yang, J.S.;Kim, H.S.;Ha, H.S.;Ha, D.W.;Kim, S.W.;Oh, S.S.;Kim, D.J.;Park, C.;Yoo, S.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.20-21
    • /
    • 2005
  • [ $BaZrO_3$ ], nanopowder was added to YBCO powder to make ($BazrO_3)_x(YBCO)_{(100-x)mol.-%}$ ($BZO_x$-YBCO) ($0{\leq}x{\leq}10$) composite targets fur pulsed laser deposition of superconducting layer in order to investigate the effect of the addition of BZO nanopowder in the YBCO target on the flux pinning properties of $BZO_x$-YBCO thin films. All the $BZO_x$-YBCO thin films were grown on single crystal STO substrate under similar conditions in the PLD chamber. The effect of YBCO targets doped with BZO on the flux pinning properties of $BZO_x$-YBCO thin films has been investigated comparatively. The isothermal magnetizations M(H) of the films were measured at temperatures between 5 and 80 K in fields up to 5 T, employing a PPMS. The optimal amount of BZO nanopowders in $BZO_x$-YBCO thin films to obtain the strongest flux pinning effects at high magnetic fields is about 6 mol.-%.

  • PDF

Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF) (침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석)

  • Choi, Jaeyeong;Kim, Do-Gyun;Jung, Euo Chang;Kwen, HaiDoo;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • CdS-QD particles are a nano-sized semiconducting crystal that emits light. Their optical properties show great potential in many areas of applications such as disease-diagnostic reagents, optical technologies, media industries and solar cells. The wavelength of emitting light depends on the particle size and thus the quality control of CdS-QD particle requires accurate determination of the size distribution. In this study, CdS-QD particles were synthesized by a simple ${\gamma}$-ray irradiation method. As a particle stabilizer polyvinyl pyrrolidone (PVP) were added. In order to determine the size and size distribution of the CdS-QD particles, sedimentation field-flow fractionation (SdFFF) was employed. Effects of carious parameters including the the flow rate, external field strength, and field programming conditions were investigated to optimize SdFFF for analysis of CdS-QD particles. The Transmission electron microscopy (TEM) analysis show the primary single particle size was ~4 nm, TEM images indicate that the primarty particles were aggregated to form secondary particles having the mean size of about 159 nm. As the concentration of the stabilizer increases, the particle size tends to decrease. Mean size determined by SdFFF, TEM, and dynamic light scattering (DLS) were 126, 159, and 152 nm, respectively. Results showed SdFFF may become a useful tool for determination of the size and its distribution of various types of inorganic particles.

Influence of Activation of Mesoporous Carbon on Electrochemical Behaviors of Pt-Ru Nanoparticle Catalysts for PEMFCs (고분자 전해질 연료전지 백금-루테늄 나노입자 촉매의 전기화학적 거동에 대한 중형기공 탄소 지지체의 활성화 효과)

  • Kim, Byung-Ju;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • In this work, mesoporous carbons (CMK-3) were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in polymer electrolyte membrane fuel cells (PEMFCs). The CMK-3 were chemically activated to obtain high surface area and small pore diameter with different potassium hydroxide (KOH) amounts, i.e., 0, 1, 3, and 4 g as an activating agent. And then Pt-Ru was deposited onto activated CMK-3 (K-CMK-3) by a chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto K-CMK-3 were determined by surface area and pore size analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and inductive coupled plasma-mass spectrometry (ICP-MS). The electrochemical properties of Pt-Ru/K-CMK-3 catalysts were also analyzed by cyclic voltammetry (CV). From the results, the K3g-CMK-3 carbon supports activated with 3 g KOH showed the highest specific surface areas. In addition, the K3g-CMK-3 led to uniform dispersion of Pt-Ru onto K-CMK-3, resulted in the enhancement of elelctro-catalystic activity of Pt-Ru catalysts.