• Title/Summary/Keyword: 나노스케일

Search Result 258, Processing Time 0.03 seconds

레이저를 이용한 마이크로-나노스케일 표면가공

  • Jeon, Ho-Jeong
    • Journal of the KSME
    • /
    • v.57 no.1
    • /
    • pp.52-56
    • /
    • 2017
  • 금속, 세라믹, 고분자 등 다양한 소재에 적용이 가능한 고출력 광에너지인 레이저 기반의 마이크로-나노스케일 표면가공기술의 기본 원리 및 응용 분야를 소개한다.

  • PDF

Review of Recent Advances in the Electrical/Mechanical Characteristics of Nanocomposites and Multi-scale Modeling of Nanocomposites (나노복합재료의 전기/역학적 특성과 예측을 위한 멀티스케일 모델링의 최신 연구 분석)

  • Taegeon Kil;Jin-Ho Bae;Hyun-No Yoon;Haeng-Ki Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2023
  • Nanocomposites have been considered innovative composite materials that have multi-functionality and high performance. Because the incorporation of nanoscale fillers may significantly improve the electrical, mechanical, and thermal properties of composites, numerous extensive studies on the characterization of nanocomposites with nanoscale fillers have been performed. In particular, the development of nanocomposites using carbon-based nanoscale fillers (e.g., carbon nanotubes, carbon black, graphene nanoplates) have attracted much interest in the composite field. This paper provides a review of recent advances in the electrical/mechanical characteristics of nanocomposites, which are essential for their practical applications. Furthermore, this paper revisits the recent research on multi-scale modeling, which is a promising approach for predicting the characteristics of nanocomposites. The current challenges and future development potentials for multi-scale modeling are also discussed.

Characterization of CNT/Polymer Nanocomposites using MD-based Multiscale Method (분자동역학에 기반한 멀티스케일 해석을 이용한 탄소나노튜브/고분자 복합재료의 특성 규명)

  • Yu, Su-Young;Yang, Seung-Hwa;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.554-557
    • /
    • 2010
  • 본 논문에서는 동일한 체적분율 가지는 탄소나노튜브 나노복합재의 기계적 특성을 규명하였다. 동일한 chirality를 가지는 서로 다른 크기의 탄소나노튜브를 이용하여 탄소나노튜브의 크기가 복합재의 물성에 미치는 영향을 규명하였다. 복합재료의 분자동역학의 결과 탄소나노튜브의 길이방향의 물성은 크게 증가하나, 전단특성의 물성 강화효과를 나타나지 않았다. 이는 통해 탄소나노튜브와 기지재료 사이의 상호작용력이 복합재료의 전단력을 전달하고, 변형을 유지할 만큼 강하지 않다는 것을 확인하였다. 이와 같은 분자동역학 결과를 바탕으로 멀티스케일 모델을 개발하여 복합재료에서 나타나는 현상을 묘사하였다. 제안된 멀티스케일 모델을 이용하여 다양한 조건의 복합재료에 대한 특성 예측이 가능하다.

  • PDF

Multiscale Analysis of the Thermoelastic Properties of Nanocomposites Considering Particle Size Effect (입자의 크기효과를 고려한 나노복합재료의 열탄성 물성의 멀티스케일 해석)

  • Choi, Joon-Myung;Yu, Su-Young;Yang, Seung-Hwa;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.119-122
    • /
    • 2011
  • 분자동역학 전산모사를 통하여 에폭시에 다양한 반경의 구형 실리콘 카바이드를 삽입한 나노복합재를 모델링하고, 이들의 기계적 물성과 열적 물성 해석을 다양한 온도조건 하에서 수행하였다. 전산모사 결과 동일한 체적분율 하에서 나노복합재는 입자의 크기가 작아질수록 탄성계수와 전단계수가 상승하는 동시에 선팽창계수는 감소하는 입자의 크기효과를 보였다. 또한 온도 상승에 따른 기계적 물성의 하락이 잘 관찰되었다. 본 연구에서는 이러한 분자동역학 해석 결과를 바탕으로 다양한 온도조건 하에서의 입자의 크기효과를 고려한 멀티스케일 3상 모델을 제시하였다. 유리상 조건 범위에서 온도 변화에 따른 나노복합재 계면의 열응력텐서와 열변형률텐서의 정보를 통해 복합재 내에서 계면이 차지하는 부피비를 온도에 대한 함수로 고려하고, 이를 멀티스케일 모델에 반영함으로써 다양한 온도조건에 대한 나노복합재 열탄성 물성의 예측해를 제시하였다. 본 연구에서 제시한 모델에서 계산된 3상 복합재의 물성은 분자동역학 전산모사의 결과에서 나타나는 나노입자의 크기효과를 잘 반영하였다.

  • PDF

Multi-scale simulation of drying process fey porous materials using molecular dynamics (part 3: multi-scale simulation) (분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(3부: 멀티스케일 시뮬레이션))

  • Baik S.M.;Keum Y.T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.4
    • /
    • pp.168-174
    • /
    • 2005
  • In this study, the numerical simulation of drying processes for porous materials is performed by employing the hierarchical multi-scale modeling and the nano-scale material properties obtained from the molecular dynamics simulation. The multi-scale simulation system is set up using pre- and post-processors and the drying process of electric porous ceramic insulator is simulated. The temperature, moisture, residual stress, and displacement distributions are compared with those based on homogenized properties.

나노-연속체 멀티스케일 해석과 통계적 접근법

  • Jo, Maeng-Hyo;Sin, Hyeon-Seong
    • Journal of the KSME
    • /
    • v.54 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • 이 글에서는 나노재료의 멀티스케일 해석에 있어서 재료 구성/조성의 불확실성과 해석 모델의 불확실성을 고려하는 통계적 접근의 중요성과 그 방법에 대해 소개하고자 한다.

  • PDF

Biaxial buckling analysis of sigmoid functionally graded material nano-scale plates using the nonlocal elaticity theory (비국소 탄성이론을 이용한 S형상 점진기능재료 나노-스케일 판의 이축 좌굴해석)

  • Lee, Won-Hong;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5930-5938
    • /
    • 2013
  • The sigmoid functionally graded mateiral(S-FGM) theory is reformulated using the nonlocal elatictiry of Erigen. The equation of equilibrium of the nonlocal elasticity are derived. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical solutions of biaxial buckling of nano-scale plates are presented using this theory to illustrate the effects of nonlocal theory and power law index of sigmoid function on buckling load. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index, (ii) length, (iii) nonlocal parameter, (iv) aspect ratio and (v) mode number on nondimensional biaxial buckling load are studied. To validate the present solutions, the reference solutions are discussed.

Multi-scale Simulation Approach on Lithiation of Silicon Electrodes

  • Jeong, Hyeon;Ju, Jae-Yong;Jo, Jun-Hyeong;Lee, Gwang-Ryeol;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.186.2-186.2
    • /
    • 2014
  • 최근 친환경 에너지에 대한 관심이 증폭되면서 리튬이차전지에 대한 연구가 활발히 진행되고 있다. 특히 음극(anode) 물질의 경우 기존의 흑연(graphite)보다 이론적 용량이 약 10배 이상 높은 실리콘(Silicon)에 대한 관심이 매우 높다. 하지만 Si의 경우 리튬 충전거동 시 400% 이상의 부피팽창으로 몇 번의 충전/방전 싸이클(cycle)에 전극이 파괴되는 문제점을 지니고 있다. 이를 극복하기 위해 Si 나노선이 고려되고 있다. 우수한 전극특성을 갖는 Si 소재를 개발하기 위해서는 원자단위에서 Si 나노선의 리튬 충전 메커니즘을 살펴보는 것이 매우 중요하다. 하지만 기존의 시뮬레이션 기법으로는 Si 나노선의 볼륨팽창에 관한 메커니즘과 리튬 충전과정에서의 상변화(결정질에서 비정질) 과정을 설명하기는 기술적으로 매우 힘들다. 고전적인 분자동역학 방법의 경우 실제 나노스케일을 고려할 수 있지만, empirical potential로는 원자들간의 화학반응을 제대로 묘사할 수 없다. 한편 양자역학에 기반을 둔 제일원리방법의 경우 계산의 복잡성으로 현재의 컴퓨터 환경에서는 나노스케일에서 원자들의 동역학적인 거동을 연구하기 매우 힘들다. 우리는 이러한 문제를 해결하기 위해 실제 나노스케일에서 원자간 화학반응을 예측할 수 있는 Si-Li 시스템의 Reactive force field를 개발하였고, 분자동역학 계산방법을 이용하여 Si 나노선의 Li 충전 메커니즘을 규명하였다.

  • PDF