• Title/Summary/Keyword: 나노구조재료

Search Result 739, Processing Time 0.029 seconds

Reinforcement of Rubber Properties by Carbon Black and Silica Fillers: A Review

  • Seo, Gon;Kim, Do-Il;Kim, Sun Jung;Ryu, Changseok;Yang, Jae-Kyoung;Kang, Yong-Gu
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.114-130
    • /
    • 2017
  • Enhancing the properties of rubber, such as the tensile strength, modulus, and wear abrasion, by the addition of carbon black and silica as fillers is very important for improving the performance of rubber products. In this review, we summarize the general features of 'the reinforcement of rubber by fillers' and the equations for representing the reinforcement phenomena. The rubber reinforcement was attributed to enhancement of the following: the rubber, bound rubber, formation of networks, and combination between rubber chains and silica followed by entanglement. The reinforcement capability of silica species with different surface and networked states demonstrated the importance of the connection between the silica particles and the rubber chains in achieving high reinforcement. The model involving combination followed by entanglement can provide a plausible explanation of the reinforcement of rubber by carbon black and silica because the combination facilitates the concentration of rubber chains near the filler particles, and entanglement of the rubber chains around the filler particles enforces the resistance against deformation and breakage of rubber compounds, resulting in high reinforcement.

Analysis of Porous Beams Through FEM Simulation (유한요소해석을 통한 다공성 보의 거동 분석)

  • Kim, Hyun-Young;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.201-207
    • /
    • 2020
  • In this study, various types of porous beams were designed and analyzed to examine the relationship between the behavior of a porous beam and certain nonlocal parameters. The nonlocal parameters were defined as functions of the conditions of defects in the porous material. Finite element analysis was conducted on the beams under typical boundary and loading conditions. Beams with stiffeners having the same dimensions as the defects in the porous beams were also analyzed. The deformation tendency of these beams was determined and described in terms of the nonlocal parameters. The deformation of a porous beam was linearly proportional to the square of the diameters of the defects, whereas that of a beam with a stiffener was linearly proportional to the cube of the diameter of the stiffener. Furthermore, for a stiffened beam with axial loading, the results derived from a 3D solid element and those under 2D plane stress conditions were different.

Improvement of Mechanical Properties of UV-curable Resin for High-aspect Ratio Microstructures Fabricated in Microstereolithography (마이크로광조형에서 고 세장비 구조물 집적화 가공을 위한 UV 경화성 수지의 물성 개선)

  • Lee, Su-Do;Choi, Jae-Won;Park, In-Beak;Ha, Chang-Sik;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.119-127
    • /
    • 2007
  • Recently, microstructures fabricated using microstereolithography technology have been used in the biological, medical and mechanical fields. Microstereolithography can fabricate real 3D microstructures with fine features, although there is presently a limited number of materials available for use in the process. Deformation of the fine features on a fabricated microstructure remains a critical issue for successful part fabrication, and part deformation can occur during rinsing or during fabrication as a result of fluid flow forces that occur during movement of mechanical parts of the system. Deformation can result in failure to fabricate a particular feature by breaking the feature completely, spatial deflection of the feature, or attaching the feature to neighboring microstructures. To improve mechanical strength of fabricated microstructures, a clay nanocomposite can be used. In particular, a high-aspect ratio microstructure can be fabricated without distortion using photocurable liquid resin containing a clay nanocomposite. In this paper, a clay nanocomposite was blended with a photocurable liquid resin to solve the deformation problem that occurs during fabrication and rinsing. An optimal mixture ratio of a clay nanocomposite was found through tensile testing and the minimal allowable distance between microstructures was found through fabrication experimentation. Finally, using these results, high-aspect ratio microstructures were fabricated using a clay nanocomposite resin without distortion.

하이브리드 화학증기증착법을 이용한 금속기판 위 그래핀의 저온합성

  • Lee, Byeong-Ju;Park, Se-Rin;Yu, Han-Yeong;Lee, Jeong-O;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.77-77
    • /
    • 2010
  • 그래핀(Graphene)은 한 겹(layer)의 2차원 판상 구조에 탄소원자들이 육각형의 기본 형태로 배열되어 있는 나노재료로서, 우수한 역학적 강도와 화학적, 열적 안정성 및 흥미로운 전기 전자적 성질을 가지고 있는 것으로 알려져 있다. 최근, 이러한 특징적이고도 우수한 물성으로 인하여 기초물성 연구에서부터 차세대 응용까지 고려한 각종 연구들이 활발하게 진행되고 있다. 일반적으로 그래핀을 얻는 방법에는 물리 화학적 박리, 열화학증기증착법(TCVD), 탄화규소의 흑연화, 흑연산화물의 환원 등의 방법들이 알려져 있다. 그 중 TCVD법이 두께의 균일성이 높은 그래핀을 합성하는데 가장 적절한 것으로 알려져 있다. 그러나 TCVD법은 탄소를 포함하는 원료가스를 분해하기 위하여 고온의 공정을 필요로 하게 되지만, 향후 산업적 응용을 고려한다면 대면적 그래핀의 저온합성법 개발은 풀어야 할 시급한 과제로 인식되고 있다. 현재는 메탄을 원료가스로 사용하여 $900^{\circ}C$ 이상에서 그래핀을 합성하는 추세이고, 최근 아세틸렌등의 활성원료가스를 이용하여 $900^{\circ}C$ 이하에서 저온 합성한 연구결과들도 속속 보고되고 있다. 본 연구에서는 고주파 플라즈마를 이용하여 비교적 저온에서 탄소원료가스를 효율적으로 분해하고, 확산플라즈마 영역에 TCVD 챔버를 결합한 하이브리드 화학증기증착법을 이용하여 그래핀의 저온합성을 도모하였다. 원료가스로는 메탄을 사용하였고, 기판으로는 전자빔증착법으로 증착한 니켈 박막 및 구리포일을 사용하였다. 실험결과, 그래핀은 $600^{\circ}C$ 부근의 저온에서도 수 층으로 이루어진 그래핀이 합성된 것을 확인하였다. 합성한 그래핀은 분석의 용이함 및 향후 다양한 응용을 위하여 실리콘산화막 및 투명고분자 기판 위에 전사(transfer)하였다. 합성된 그래핀의 구조평가를 위해서는 광학현미경과 Raman분광기를 주로 사용하였으며, 원자힘현미경(AFM), 주사전자현미경(SEM), 투과전자현미경(TEM) 등도 이용하였다.

  • PDF

Preceramic Polymer Technology for High Temperature Ceramic Composite and its Application (초고온복합소재용 프리세라믹폴리머 합성 및 응용기술)

  • Lee, Yoonjoo;Kim, Younghee;Bae, Seong Gun;Lee, Hyeon Myoung;Cho, Kwang Youn;Kwon, Woo Teck;Kim, Soo Ryong;Riu, Doh Hyung;Shin, Dong Geun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • The preceramic polymer can realize a variety of complex ceramic structures that can not be obtained by conventional ceramic processes. Polycarbosilane, which is a typical preceramic polymer, can control the molecular structure, molecular weight and molecular weight distribution for preparing complex morphology and microstructure of SiC ceramics, including SiC fiber. In this paper, synthesis and molecular structure control technique of polycarbosilane is explained. The silicon carbide fiber prepared by melt spinning, stabilization and heat treatment, and ceramic fiber composites technology made by PIP process are also discussed. In addition, we introduce an example of the development of a complex silicon carbide material such as a silicon carbide hollow fiber having a nanoporous structure.

Study on the Possibility of Recycling Crankcase Soot from Diesel Engine (디젤 엔진에서 생성된 크랭크케이스 수트의 재활용 가능성 연구)

  • Kim, Soo-yang;Choi, Jae-Hyuk;Rho, Bum-Seok;Kim, Junsoo;Kang, Jun;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.179-186
    • /
    • 2021
  • In this study, we attempted to comparatively analyze the structural characteristics of soot generated from marine engines to review the possibility of recycling crankcase soot by classifying it as exhaust soot and crankcase soot. The annealing procedure was performed in an argon gas atmosphere at 2,000℃ and 2,700℃, and Raman spectroscopy and High-Resolution Transmission Electron Microscopy(HRTEM) were used to analyze the structural properties of the samples. Furthermore, digital image processing techniques were utilized to quantitatively analyze the acquired HRTEM images. The Raman analysis demonstrated a relatively high G/D ratio in the exhaust soot and annealing conditions at 2,700℃. In the HRTEM images, both soot were able to identify similar forms of graphite nanostructures, but there were limitations in that they could not quantitatively derive differences in the degree of graphite depending on the type of soot and annealing temperature. Thus, digital image processing quantitatively analyzed the length and tortuosity of the fringe of the HRTEM image, which is consistent with the Raman analysis. This meant that the exhaust soot had a more graphite structure than the crankcase soot, and that annealing at a higher temperature improved the graphite structure. This study confirmed that both the crankcase soot and exhaust soot can be recycled as a graphite materials.

Shear bond strength of dental CAD-CAM hybrid restorative materials repaired with composite resin (치과용 복합레진으로 수리된 CAD-CAM hybrid 수복물의 전단결합강도)

  • Moon, Yun-Hee;Lee, Jonghyuk;Lee, Myung-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.193-202
    • /
    • 2016
  • Purpose: This study was performed in order to assess the effect of the surface treatment methods and the use of bonding agent on the shear bond strength (SBS) between the aged CAD-CAM (computer aided design-computer aided manufacturing) hybrid materials and added composite resin. Materials and methods: LAVA Ultimate (LU) and VITA ENAMIC (VE) specimens were age treated by submerging in a $37^{\circ}C$ water bath filled with artificial saliva (Xerova solution) for 30 days. The surface was ground with #220 SiC paper then the specimens were divided into 9 groups according to the combination of the surface treatment (no treatment, grinding, air abrasion with aluminum oxide, HF acid) and bonding agents (no bonding, Adper Single Bond 2, Single Bond Universal). Each group had 10 specimens. Specimens were repaired (added) using composite resin (Filtek Z250), then all the specimens were stored for 7 days in room temperature distilled water. SBS was measured and the fractured surfaces were observed with a scanning electron microscope (SEM). One-way ANOVA and Scheffe test were used for statistical analysis (${\alpha}=.05$). Results: Mostly groups with bonding agent treatment showed higher SBS than groups without bonding agent. Among the groups without bonding agent the groups with aluminum oxide treatment showed higher SBS. However there was no significant difference between groups except two subgroups within LU group, which revealed a significant increase of SBS when Single Bond Universal was used on the ground LU specimen. Conclusion: The use of bonding agent when repairing an aged LAVA Ultimate restoration is recommended.

Microstructural Characterization of $Al_3$(${Nb_{1-x}}{Zn_x}$) Alloy Prepared by Elemental Powder and Intermetallic Powder (원료분말과 금속간화합물 분말로 기계적 합금화한 $Al_3$(${Nb_{1-x}}{Zn_x}$) 합금의 미세구조특성)

  • Lee, Gwang-Min;Lee, Ji-Seong;An, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.345-353
    • /
    • 2001
  • The present study was carried out to investigate the effect of zirconium addition to $Al_3$Nb intermetallic on the crystal structural modification and microstructural characterization of $Al_3$Nb intermetallic. Elemental Al, Nb, Zr powders and arc melted $Al_3$Nb and $Al_3$Zr intermetallic mixed powders were used as starting materials. MA was carried out in an attritor rotated with 300 rpm for 20 hours. The behavior of MA between two starting materials was some-what different in which the value of internal strain of the elemental powders was higher than that of the intermetallic powder. The intermetallic powder was much more disintegrated during the MA processing. In the case of the elemental powders, AlNb$_2$ phase were transformed to Al(Nb.Zr)$_2$ as a result of ternary addition of Zr element. With the successive heat treatment at 873K for 2 hours, the Al(Nb.Zr)$_2$ phase was transformed to more stable $Al_3$(Nb.Zr) phase. This transformation was clearly confirmed by the identification of X-ray peak position shift. On the other hand, in the carte of the intermetallic powder, there was no evidence of phase transformation to other ternary intermetallic compounds or amorphous phases, even in the case of additional heat treatment. However, nano-sized intermetallic with $Al_3$Nb and $Al_3$Zr were just well distributed instead of phase transformation.

  • PDF

Evaluation of Electromagnetic Pulse Shielding Effectiveness and Bonding Performance of Inorganic Paint based on Carbon Material (탄소재료 기반 무기계 도료의 전자파 차폐성능 및 부착성능 평가)

  • Jang, Kyong-Pil;Kim, Sang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.801-807
    • /
    • 2021
  • In various industrial fields and infrastructure based on electronic components, such as communication equipment, transportation, computer networks, and military equipment, the need for electromagnetic pulse shielding has increased. Two methods for applying electromagnetic pulse shielding are effective. The first is construction using shielding materials, such as shielding concrete, shielding doors, and shielding windows. The other is coating shielding paints on non-shielding structures. Electromagnetic pulse shielding paints are made using conductive materials, such as carbon nanotubes, graphite, carbon black, and carbon fiber. In this paint, electromagnetic pulse shielding performance is added to the commonly used water-based paint. In this study, the shielding effectiveness and bonding performance of paints using conductive graphite and carbon black as shielding materials were evaluated to develop electromagnetic pulse shielding inorganic paints. The shielding effectiveness and bonding performance were evaluated by applying six mixtures composed of different kinds and amounts of shielding material. The mixture of conductive graphite and carbon black at a weight ratio of 1:0.2 was the most effective in shielding as 33.6 dB. Furthermore, the mixture produced using conductive graphite only showed the highest bonding performance of 1.06 MPa.

Fabrication of Radar Absorbing Shells Made of Hybrid Composites and Evaluation of Radar Cross Section (하이브리드 복합재를 이용한 레이더 흡수 쉘의 제작 및 레이더 단면적 평가)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Ahn, Bierng-Chearl;Park, Seoung-Bae;Won, Myung-Shik
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The avoidance of enemy's radar detection is very important issue in the modem electronic weapon system. Researchers have studied to minimize reflected signals of radar. In this research, two types of radar absorbing structure (RAS), 'C'-type shell and 'U'-type shell, were fabricated using fiber-reinforced composite materials and their radar cross section (RCS) were evaluated. The absorption layer was composed of glass fiber reinforced epoxy and nano size carbon-black, and the reflection layer was fabricated with carbon fiber reinforced epoxy. During their manufacturing process, undesired thermal deformation (so called spring-back) was observed. In order to reduce spring-back, the bending angle of mold was controlled by a series of experiments. The spring-back of parts fabricated by using compensated mold was predicted by finite element analysis (ANSYS). The RCS of RAS shells were measured by compact range and predicted by physical optics method. The measured RCS data was well matched with the predicted data.