• Title/Summary/Keyword: 끝와류

Search Result 32, Processing Time 0.028 seconds

Geometry Realization of an Airplane and Numerical Flow Visualization (역설계에 의한 비행기의 형상 구현과 수치계산에 의한 유동 가시화)

  • Kim, Yang-Kyun;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Park, Jeong
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • The geometry of a commercial passenger airplane is realized based on a Boeing 747-400 model through the photographic scanning and reverse engineering. The each element consisting of the plane such as fuselage, wing, vertical fin, stabilizer and engines, is individually generated and then the whole body is assembled by the photomodeler. The maximum error in the realized airplane is about 1.4% comparing with the real one. The three-dimensional inviscid steady compressible governing equations are solved in the unstructured tetrahedron grid system, and in a finite volume method using STAR-CD when the airplane flies at the cruise condition. The pressure distribution on the surface and the wing-tip vortices are visualized, and in addition to the aerodynamics coefficients, lift and drag are estimated.

Experimental study on the aerodynamic effects of slots at a rotor tip (로터 끝 슬롯의 공기역학적 효과에 대한 실험 연구)

  • Yisu Shin;Seungcheol Lee;Jooha Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.39-48
    • /
    • 2023
  • In this study, we investigate the effects of slots installed on the tip of a rotor blade on aerodynamic characteristics. The slots weaken the strength and spatial coherence of the tip vortex at early vortex age and accelerate the dissipation of the generated tip vortex. Accordingly, the turbulence intensity of the rotor wake is reduced at both near and far wake, which leads to a reduction in broadband noise. Tonal noise is also reduced by mitigation of tip vortices, but tonal noise reduction is limited to a narrower range of azimuths than broadband noise due to the extinction of tip vortices. In addition, slots reduce both mean thrust and thrust fluctuations. Reduction in thrust fluctuations leads to a reduction in blade loading noise, resulting in a reduction in tonal noise.

Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation (사중극자 보정 Ffowcs Williams and Hawkings 방정식을 이용한 수중 익형 공동 유동소음에 대한 수치적 고찰)

  • Ku, Garam;Ryu, Seo-Yoon;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.263-270
    • /
    • 2018
  • In most industry fields concerning external flow noise problems, the hybrid computational aeroacoustic techniques based on the FW-H (Ffowcs Williams and Hawkings) equation are widely used for its numerical efficiency. However, when the surface integral form of FW-H equation is used without volume quadrupole sources, it is known to generate significant non-physical noise in a certain case. Especially, in the case of a flow in which the tip vortex cavitation is formed in the distant downstream direction such as flow driven by an underwater propeller, the accuracy in noise prediction becomes poor unless it is not properly modelled. Therefore, in this study, the nonphysical acoustic waves caused by the surface integral form of FW-H equation is reduced by adding the quadrupole correction term. First, to verify the accuracy of the in-house code of FW-H equation, the noise by an axial fan used in the outdoor unit of air conditioner was calculated and compared with the results of ANSYS Fluent. In order to verify the effects of the quadrupole correction term, the noise prediction for isentropic vortex convection is performed and it is confirmed that the error is reduced by the quadrupole correction term. Finally, the noise prediction is performed for the flow field generated by the Clark-Y hydrofoil in underwater. It is confirmed that the error caused by the cavitation passing through the integral surface can be reduced by the quadrupole correction term.

A New Empirical Formula for Steering Gear Torque of Tankers by Statistical Analysis based on Sea Trial Data and Modified Lifting Line Theory (통계적 해석에 의한 유조선의 조타기 토오크 계산 경험식 개발)

  • D.I. Son;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • In this paper, an empirical formula to estimate the steering gear torque of a Tanker with a horn type rudder was developed by using the statistical analysis. The hydrodynamic characteristics of the horn type rudder in the free-stream condition were calculated by using the modified lifting line theory by Molland, and the interaction effects by propeller and hull were analyzed by the regression analysis of the sea-trial data of 32 vessels. The comparison with the delivered vessels' data shows that the formula can be used for predicting the steering gear torque at the initial design stage.

  • PDF

Experimental Study on Heat Flow According to the Wind Velocity in an Underground Life Space (지하생활공간 화재시 풍속에 따른 열유동 특성 연구)

  • Kim, Young-No;Suk, Chang-Mok;Kim, Wha-Jung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study analyzes heat flows and fire behavior through a reduced-scale model experiments about change of wind velocity in underground life space. When the wind velocity is increased the temperature rise time of the fire room was risen fast. And temperature of fire room was increased. And increase of wind velocity displayed maximum temperature at an opening of the fire room. Heat flows by fire spread increase size of smoke occurrence and flame, and displayed high temperature distribution in passageway than inside of neighborhood department promoting eddy flow spread as wind velocity increases. Finally, heat flows are decided by wind and wind velocity at fire of underground life space, and Wind velocity increases, temperature increase and decrease could confirm that is gone fast.

Visualization and Computational Analysis for Flow around Rotating Blades (회전하는 블레이드 주위의 유동가시화 및 전산유동해석)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • The optimal design is needed for the blade geometry of the quad-rotor blades which is mainly used for Unmanned Aerial Vehicle. To do this, it is important to analyze the wakes under the blades. In the present study, the flow around the rotating blades was analyzed using PIV(Particle Image Velocimetry) and CFD(Computational Fluid Dynamics). The maximum axial velocity was measured at about 60% position toward the radial direction of the blade. The positions of vorticities in the test section obtained by PIV and CFD were turned out to be almost alike. The values in the difference of pressure coefficients at the upper and the lower blades were increased depending on the radial direction. Then, the values were decreased at the blade tip. The data of the flow analysis in the present study are expected to be served as the design of blades and ducts for the thrust improvement in the future.

A CFD Study on Flow Characteristics with Inclined Angles of Two-Dimensional Sharp Plane (CFD에 의한 2차원 Sharp Plane의 각도변화에 따른 유동특성에 관한 연구)

  • 금종윤;박성호;박주헌;송근택;모장오;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.40-45
    • /
    • 2001
  • Recently, the use of numerical simulation has been increased rapidly because of the development of high performance computer systems. The present study is aimed to investigate flow characteristics of a two-dimensional sharp plane. Unsteady calculation by FDM(Finite Difference Method) based upon SOLA scheme which was performed at $Re=2{\times}10^4$in viscous incompressible flow within a finite domain on the irregular grid formation. Total numbers of irregular grids are $8{\times}10^4$. The minimum grid size is 1/100 of the plane length L which is the representative length. The inclined angles of every objects are $15^{\circ}, \;30^{\circ}\;and\; 45^{\circ}.$ And, the edge angle of the plane is $30^{\circ}.$ This study discussed the flow characteristics in term of the turbulent intensity, vorticity and frequency analysis. Developed flows show that the periodic Karman vortices occur at the back of the plane.

  • PDF

Aerodynamic Characteristics of Basic Airfoils for Agricultural Helicopter using Wind-tunnel Test and CFD Simulation (풍동실험과 CFD 시뮬레이션을 이용한 농용 헬리콥터 기본 익형의 공력특성 고찰)

  • Won, Yong Sik;Koo, Young Mo;Haider, B.A.;Sohn, Chang Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.54-54
    • /
    • 2017
  • 본 연구는 무인 헬리콥터의 양력을 개선하기 위한 기초 단계로서 V1505A 및 V2008B 기본 두 익형의 400 mm 블레이드 섹션에 해당하는 모델에 대한 풍동실험을 실시하여 양력, 항력 및 동력특성을 분석하고 CFD 시뮬레이션의 결과와 비교하고 검증하였다. 시뮬레이션은 풍동 실험과 유사하게 설정하기 위하여 400 mm 블레이드 섹션의 양 끝을 벽으로 제한하여 3차원 와류현상을 억제하여 모델을 구성하였고, 시뮬레이션의 결과와 비교하여 모델을 검증하였다. 사용된 모델은 로터로부터 $Re=0.32{\times}10^6$ 영역까지는 aminar 모델을 사용하였으며, 그 이후 영역역(>$Re=0.32{\times}10^6$)은 양력 및 저항의 급격한 변화를 올바로 포착할 수 있다는 S-A 모델을 적용하여 확장하였다. 시뮬레이션의 격자는 유동 현상에 있어 박리로 야기된 와류 현상을 관찰하기 위하여 익형 주변에 접하는 부분에 격자를 집중시켰다. 시뮬레이션 방법은 유속은 36~141 m/s 까지 5 수준으로 하였으며, 받음각은 $0{\sim}16^{\circ}$로 7 수준으로 변화 시키면서 공력계수 및 동력을 분석하였다. 양력분석에 있어 익형 V1505A에 비해 익형 V2008B의 특성이 우수하였으나, 익형 V1505A는 실속 이후 양력이 급격히 떨어지지 않고 유지되는 특성을 보였다. 익형 V2008B는 낮은 받음각에서 높은 공력과 낮은 항력을 나타냈다. 동력 분석 결과로 익형 V1505A의 유도동력은 총 동력의 56~72%를 차지하고, 형상동력은 총 동력의 27~43%를 차지하였다. 익형 V2008B는 유도동력은 총 동력의 66~81%를 차지하고, 형상동력은 총 동력의 18~33%를 차지하였다. 익형 V2008B이 익형 V1505A보다 유도동력은 크며, 형상동력은 적게 나와 상대적으로 효율적이라 할 수 있다. 헬리콥터 동력원의 규모는 법률적인 총중량에 의하여 제한되므로 일반적인 농용 소형 무인 헬리콥터 엔진의 사양인 24.5 kW (32PS)를 적용한다면, 익형 V1505A은 받음각 $8{\sim}10^{\circ}$에서 그리고 익형 V2008B은 $7{\sim}9^{\circ}$정도에서 받음각이 제한되며 이때 총 양력은 1200~1300 N 정도로 예상된다.

  • PDF

Numerical Investigation of the Effect of Spacing in Coaxial Propeller Multi-Copter in Hovering (멀티콥터용 동축반전 프로펠러 상하 간격에 따른 제자리 비행 공력 특성에 대한 수치적 연구)

  • Sim, Min-Cheol;Lee, Kyung-Tae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • In this study, a numerical analysis was performed on 26 inch single and coaxial propeller using the ANSYS Fluent 19.0 Solver to analyse the effect of the distance between coaxial propellers as one of the design parameter. The Moving Reference Frame (MRF) method was used for single propeller, while the sliding mesh method was used for a coaxial propeller to analyse the flow field varying with azimuth angle. The thrust and power are decreased as the upper and lower propeller approaching each other. As H/D is increased, interference between the propellers is decreased. According to the flow field variable contour of the coaxial propeller, it appears that the change in aerodynamic performance is due to the loading effect and the tip vortex wake effect.

A NUMERICAL STUDY ON THE EFFECT OF DOWN-WASH OF A WING-BODY ON ITS AERODYNAMIC CHARACTERISTICS (익형 동체의 하강기류(Down-wash)가 공기역학적 특성에 미치는 영향에 관한 수치해석연구)

  • Yoon, K.H.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • Drag reduction of a running vehicle is very important issue for the energy savings and emission reduction of its power train. Especially for a solar powered electric vehicle, the drag reduction and weight lightening are two serious problems to be solved to extend its driving distance under the given energy condition. In this study, the ground effect of an airfoil shaped road vehicle was studied for an optimum body design of an ultra-light solar powered electric vehicle. Clark-Y airfoil type was adopted to the body shape of the model vehicle to reduce aerodynamic drag. From the study, it was found that the drag of the model vehicle was reduced as the height(h) between ground and the lower surface of the model vehicle was decreased. It is due to the reduction of the down-wash decreasing the induced drag of the vehicle. The lift was also decreased as the height decreased. It is due to the turbulent boundary layer developed beneath the vehicle body. The drag is classified into two types; the form and friction drag. The fraction of form drag to friction one is 76 to 24 on the model vehicle. As the height(h) of the model vehicle from the ground surface increases the form drag also increases but the friction drag is in reverse.