• Title/Summary/Keyword: 꼭지점 인식

Search Result 23, Processing Time 0.021 seconds

Research to improve the performance of self localization of mobile robot utilizing video information of CCTV (CCTV 영상 정보를 활용한 이동 로봇의 자기 위치 추정 성능 향상을 위한 연구)

  • Park, Jong-Ho;Jeon, Young-Pil;Ryu, Ji-Hyoung;Yu, Dong-Hyun;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6420-6426
    • /
    • 2013
  • The indoor areas for the commercial use of automatic monitoring systems of mobile robot localization improves the cognitive abilities and the needs of the environment with this emerging and existing mobile robot localization, and object recognition methods commonly around its great sensor are leveraged. On the other hand, there is a difficulty with a problem-solving self-location estimation in indoor mobile robots using only the sensors of the robot. Therefore, in this paper, a self-position estimation method for an enhanced and effective mobile robot is proposed using a marker and CCTV video that is already installed in the building. In particular, after recognizing a square mobile robot and the object from the input image, and the vertices were confirmed, the feature points of the marker were found, and marker recognition was then performed. First, a self-position estimation of the mobile robot was performed according to the relationship of the image marker and a coordinate transformation was performed. In particular, the estimation was converted to an absolute coordinate value based on CCTV information, such as robots and obstacles. The study results can be used to make a convenient self-position estimation of the robot in the indoor areas to verify the self-position estimation method of the mobile robot. In addition, experimental operation was performed based on the actual robot system.

Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design (SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석)

  • Park, Chan-Ill;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.49-59
    • /
    • 2008
  • SIFT(Scale Invariant Feature Transform) is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vortices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3-D image constructions, and its most computation-intensive stage is a keypoint localization. In this paper, we develope a fixed-point model of the keypoint localization and propose its efficient hardware architecture for embedded applications. The bit-length of key variables are determined based on two performance measures: localization accuracy and error rate. Comparing with the original algorithm (implemented in Matlab), the accuracy and error rate of the proposed fixed point model are 93.57% and 2.72% respectively. In addition, we found that most of missing keypoints appeared at the edges of an object which are not very important in the case of keypoints matching. We estimate that the hardware implementation will give processing speed of $10{\sim}15\;frame/sec$, while its fixed point implementation on Pentium Core2Duo (2.13 GHz) and ARM9 (400 MHz) takes 10 seconds and one hour each to process a frame.

The Evaluation of Failure Probability for Rock Slope Based on Fuzzy Set Theory and Monte Carlo Simulation (Fuzzy Set Theory와 Monte Carlo Simulation을 이용한 암반사면의 파괴확률 산정기법 연구)

  • Park, Hyuck-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.109-117
    • /
    • 2007
  • Uncertainty is pervasive in rock slope stability analysis due to various reasons and subsequently it may cause serious rock slope failures. Therefore, the importance of uncertainty has been recognized and subsequently the probability theory has been used to quantify the uncertainty since 1980's. However, some uncertainties, due to incomplete information, cannot be handled satisfactorily in the probability theory and the fuzzy set theory is more appropriate for those uncertainties. In this study the random variable is considered as fuzzy number and the fuzzy set theory is employed in rock slope stability analysis. However, the previous fuzzy analysis employed the approximate method, which is first order second moment method and point estimate method. Since previous studies used only the representative values from membership function to evaluate the stability of rock slope, the approximated analysis results have been obtained in previous studies. Therefore, the Monte Carlo simulation technique is utilized to evaluate the probability of failure for rock slope in the current study. This overcomes the shortcomings of previous studies, which are employed vertex method. With Monte Carlo simulation technique, more complete analysis results can be secured in the proposed method. The proposed method has been applied to the practical example. According to the analysis results, the probabilities of failure obtained from the fuzzy Monte Carlo simulation coincide with the probabilities of failure from the probabilistic analysis.