• Title/Summary/Keyword: 깊이선량분포

Search Result 109, Processing Time 0.033 seconds

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Modeling of Dual Head Gantry Radiotherapy System with Monte Carlo Simulation (듀얼 헤드 갠트리 방사선치료 시스템 설계를 위한 몬테칼로 시뮬레이션 연구)

  • Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.627-632
    • /
    • 2017
  • In order to design a dual-head gantry radiotherapy system, the single head of LINAC was modeled using GATE as a preliminary study. The LINAC head was designed with VARIAN manufacturer's information. 6 MV photons were generated from the head and the photons w irradiated to a water phantom for beam evaluation. GATE simulation was segmented by two stages, the one was to generate X-ray spectrum and the other one was for irradiation X-ray to the water phantom. The quantitative results were described in Percentage depth dose and beam profile. Two field size conditions were employed as $5{\times}5$ and $10{\times}10cm^2$. After beam quality was verified, dual heads gantry radiotherapy system were simulated and they was compared to the single head of LINAC system in terms of dose deposition with in the phantom. The simulated LINAC head showed acceptable beam quality result for radiotherapy. The efficiency was calculated that deposited dose from dual heads was divided by the dose from single head. At all conditions, dual heads showed higher treatment efficiency. Efficiency was increased about 40 to 60%. Form the result, The dual head gantry system of new LINAC system will contribute to the practical radiotherapy of tumor and to reduce treatment time.

Dosimetric Characteristics on Penumbra Regions of the Multileaf Collimator as Compared with the Lead Alloy Block (다엽 콜리메이터(Multileaf Collimator)와 합금납 차폐물(Lead Alloy Block)의 반 그림자영역의 선량 분포상의 특성 비교)

  • Lee Sang Wook;Oh Young Tack;Kim Woo Cheol;Keum Ki Chang;Yoon Seong Ick;Kim Hyun Soo;Park Won;Chu Seong Sil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.391-396
    • /
    • 1995
  • Purpose : The Conformal Radiation Therapy has bee widely used under favour of development of computer technologies. The delivery of a large number of static radiation fields are being necessary for the conformal irradiation. In this paper we investigate dosimetric characteristics on penumbra regions of a multileaf collimator(MLC), and compare to those of lead alloy block for the optimal use of the system in 3-D conformal radiotherapy. Materials and Methods : The measurement of penumbra by MLC or lead alloy block was performed with 6 or 10 MV X-rays. The film was positioned at a dmax depth and 10 cm depth, and its optical density was determined using a scanning videodensitometer. The effective penumbra, the distance from $80{\%}$ to $20{\%}$ isodose lines and $90{\%}$ to $10{\%}$ were analyzed as a function of the angle between the direction of leaf motion and the edge defined by leaves. Results : Increasing MLC angle ($0-75^{\circ}$) was observed with increasing the penumbra widths and the scalloping effect. There was no definite differences of penumbra width from $80{\%}$ to $20{\%}$ isodose lines, while being the small increase of penumbra width from $90{\%}$ to $10{\%}$ isodose line varing the depth and energy. The effective penumbra width of lead alloy block are agree resonably with those of MLC within 4.8mm. Conclusion : The comparative qualitative study of the penumbra between MLC and lead alloy block demonstrate the clinical acceptability and suitability of the multileaf collimator for 3-D conformal radiotherapy.

  • PDF

An Experimental Study on the Effect of Combined X-ray and Microwave Hyperthermia on the Rectum and Urinary Bladder of Rats (흰쥐의 직장과 방광에 X-선 조사와 마이크로파 온열요법의 효과에 관한 실험적 연구)

  • Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.115-128
    • /
    • 1986
  • Hyperthermia can enhance the radiation effect as a synergistic reaction in combined X-ray irradiation and hyperthermia; hyperthermia sensitize radioresistant S-phase cells and inhibit cellular recovery from sublethal damage. We fabricated 100 watts, 2450 MHz microwave applicator for hyperthermia and planned the method and condition of heating and measured the temperature by using Agar phantom as a preliminary test. For biological examination, 102 rats were divided into 4 groups as hyperthermia, X-ray irradiation (6Gy-15Gy), combined X-ray and hyperthermia, and normal control groups. Microscopic examination of the rectum and bladder was done and the results were as followings: 1. The microwave generator with 100 watts, 2450MHz magnetron could be heating up to $40^{\circ}{\sim}50^{\circ}C$ for one hour in living tissue. 2. The thermal distribution in tissue equivalent phantom with microwave can be maintained at $40^{\circ}{\sim}44^{\circ}C$ in area of 3cm in depth and 2-10cm in diameter. 3. In Hyperthermia alone group, there was submucosal edema of the rectum but no histologic change in the urinary bladder was seen. 4. The minimal necrosis of the mucosa was appeared in the rectum and bladder after 15 days of 6 Gy and 8 Gy irradiation respectively. The minimal necrosis of the muscle layer of rectum and bladder was appeared after 15 days of 8Gy and 60days of 10Gy irradiation respectively. 5. In combined group of radiation and hyperthermia, thermal enhancement ratio (calculated at necrosis of mucosa and muscle layer) of rectum and bladder was 1.0, and it suggest that there is no change of tolerance dose of normal rectum and bladder.

  • PDF

Change of Proton Bragg Peak by Variation of Material Thickness in Head Phantom using Geant4 (Geant4 전산모사를 이용한 두개골 팬텀의 물질 두께 변동에 따른 양성자 브래그 피크의 위치 변화)

  • Kim, You Me;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.401-408
    • /
    • 2021
  • Proton therapy using the Bragg peak is one of the radiation therapies and can deliver its maximum energy to the tumor with giving least energy for normal tissue. A cross-sectional image of the human body taken with the computed tomography (CT) has been used for radiation therapy planning. The HU values change according to the tube voltage, which lead to the change in the boundary and thickness of the anatomical structure on the CT image. This study examined the changes in the Bragg peak of the brain region according to the thickness variation in the head phantom composed of several materials using the Geant4. In the phantom composed of a single material, the Bragg peak according to the type of media and the incident energy of the proton beams were calculated, and the reliability of Geant4 code was verified by the Bragg peak. The variation of the peak in the brain region was examined when each thickness of the head phantom was changed. When the thickness of the soft tissue was changed, there was no change in the peak position, and for the skin the change in the peak was small. The change of the peak position was mainly changed when the bone thickness. In particular, when the bone was changed only or the bone was changed together with other tissues, the amount of change in the peak position was the same. It is considered that measurement of the accurate bone thickness in CT images is one of the key factors in depth-dose distribution of the radiation therapy planning.

The Effect of Partially Used High Energy Photon on Intensity-modulated Radiation Therapy Plan for Head and Neck Cancer (두경부암 세기변조방사선치료 계획 시 부분적 고에너지 광자선 사용에 따른 치료계획 평가)

  • Chang, Nam Joon;Seok, Jin Yong;Won, Hui Su;Hong, Joo Wan;Choi, Ji Hun;Park, Jin Hong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: A selection of proper energy in treatment planning is very important because of having different dose distribution in body as photon energy. In generally, the low energy photon has been used in intensity-modulated radiation therapy (IMRT) for head and neck (H&N) cancer. The aim of this study was to evaluate the effect of partially used high energy photon at posterior oblique fields on IMRT plan for H&N cancer. Materials and Methods: The study was carried out on 10 patients (nasopharyngeal cancer 5, tonsilar cancer 5) treated with IMRT in Seoul National University Bundang Hospital. CT images were acquired 3 mm of thickness in the same condition and the treatment plan was performed by Eclipse (Ver.7.1, Varian, Palo Alto, USA). Two plans were generated under same planing objectives, dose volume constraints, and eight fields setting: (1) The low energy plan (LEP) created using 6 MV beam alone, (2) the partially used high energy plan (PHEP) created partially using 15 MV beam at two posterior oblique fields with deeper penetration depths, while 6 MV beam was used at the rest of fields. The plans for LEP and PHEP were compared in terms of coverage, conformity index (CI) and homogeneity index (HI) for planning target volume (PTV). For organs at risk (OARs), $D_{mean}$ and $D_{50%}$ were analyzed on both parotid glands and $D_{max}$, $D_{1%}$ for spinal cord were analyzed. Integral dose (ID) and total monitor unit (MU) were compared as addition parameters. For the comparing dose to normal tissue of posterior neck, the posterior-normal tissue volume (P-NTV) was set on the patients respectively. The $D_{mean}$, $V_{20Gy}$ and $V_{25Gy}$ for P-NTV were evaluated by using dose volume histogram (DVH). Results: The dose distributions were similar with regard to coverage, CI and HI for PTV between the LEP and PHEP. No evident difference was observed in the spinal cord. However, the $D_{mean}$, $D_{50%}$ for both parotid gland were slightly reduced by 0.6%, 0.7% in PHEP. The ID was reduced by 1.1% in PHEP, and total MU for PHEP was 1.8% lower than that for LEP. In the P-NTV, the $D_{mean}$, $V_{20Gy}$ and $V_{25Gy}$ of the PHEP were 1.6%, 1.8% and 2.9% lower than those of LEP. Conclusion: Dose to some OARs and a normal tissue, total monitor unit were reduced in IMRT plan with partially used high energy photon. Although these reduction are unclear how have a clinical benefit to patient, application of the partially used high energy photon could improve the overall plan quality of IMRT for head and neck cancer.

  • PDF

Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy (전립선암 치료 시 Tomoimage에 기초한 Setup 오차에 관한 고찰)

  • Cho, Jeong-Hee;Lee, Sang-Kyu;Kim, Sei-Joon;Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Purpose: The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Materials and Methods: Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours and then the radiation therapist registered the MVCT images with the CT simulation images based on the bone based, rectal balloon based and GTV based respectively and registered image was compared with each others. The average and standard deviation of each X, Y, Z and rotation from the initial planning center was calculated for each patient. The image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours. Results: There was a significant difference in the mean variations of the rectal balloon among the methods. Statistical results based on the bone fusion shows that maximum x-direction shift was 8 mm and 4.2 mm to the y-direction. It was statistically significant (P=<0.0001) in balloon based fusion, maximum X and Y shift was 6 mm, 16mm respectively. One patient's result was more than 16 mm shift and that was derived from the rectal expansions due to the bowl gas and stool. GTV based fusion results ranging from 2.7 to 6.6 mm to the x-direction and 4.3$\sim$7.8 mm to the y-direction respectively. We have checked rotational error in this study but there are no significant differences among fusion methods and the result was 0.37$\pm$0.36 in bone based fusion and 0.34$\pm$0.38 in GTV based fusion.

  • PDF

Validity of Clinically Used Tray Transmission Factor (임상적으로 쓰이는 차폐선반투과율의 타당성에 관한 연구)

  • 윤형근
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.218-224
    • /
    • 2003
  • Purpose:By evaluating the dependence of the tray transmission factor (tray factor) on collimator setting and tray thickness, we determined the validity of the clinically used single tray factor for standard radiation field size (10${\times}$10 $\textrm{cm}^2$). Methods and Materials:For each X ray energies (6 and 10 MV), outputs were measured by using 5 steps of tray thickness (0, 6, 8, 10, 12 mm) and 7 steps of radiation field size (5${\times}$5, 10${\times}$10, 15${\times}$15, 20${\times}$20, 25${\times}$25, 30${\times}$30, 35${\times}$35 $\textrm{cm}^2$) at 10 cm phantom depth. Outputs were measured in both 'with tray' and 'without tray' conditions by using radiation with the same monitor units, and the tray factors were determined by the ratios of the two outputs. To evaluate the validity of a single tray factor obtained for standard radiation field, we analyzed the pattern of the field sizes in cases treated at our hospital in 2002. Results : In the 6 MV X-ray, the increases in the tray factor between the standard field (l0${\times}$10 $\textrm{cm}^2$) and the largest field (35${\times}$35 $\textrm{cm}^2$) were 0.517%, 0.835%, 1.058%, 1.066% in 6, 8, 10, and 12 mm thickness tray, respectively. In the 10 MV X-ray, the increases in the fray factor between the standard field (10${\times}$10 $\textrm{cm}^2$) and the largest field (35${\times}$35 $\textrm{cm}^2$) were 0.517%, 0.836%, 1.058%, 1.066% in 6, 8, 10, 12 mm thickness tray, respectively. In a major portion of clinical cases, when the field size was smaller than 20${\times}$20 $\textrm{cm}^2$, the tray factor was in good agreement with the standard tray factor. However, in cases where the field sizes were 30${\times}$30 $\textrm{cm}^2$ and 35${\times}$35 $\textrm{cm}^2$, the error could exceed 1.0%. Conclusion:The tray factor increased with increasing field size or decreasing tray thickness. The difference of tray factor between the small field and the large field increased with increasing tray thickness. Furthermore, the standard tray factor was valid in most clinical cases except for when the field size was greater than 30${\times}$30 $\textrm{cm}^2$, wherein the error could exceed 1.0%.

  • PDF

Radiation Therapy in Elderly Skin Cancer (노령의 피부암에서 방사선치료)

  • Kim, Jin-Hee
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Purpose: To evaluate the long term results(local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. Material and Methods: The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma(10 patients), basal cell carcinoma(3 patients), verrucous carcinoma(1 patient) and skin adnexal origin carcinoma(1 patient). The most common tumor location was the head(13 patients). The mean tumor diameter was 4.9 cm(range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from $50{\sim}80$ Gy(mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. Results: The local control rates were 100%(15/15). In addition, the five year disease free survival rate(5YDFS) was 80% and twelve patients(80%) had no recurrence and skin cancer recurrence occurred in 3 patients(20%). Three patients have lived an average of 90 months($68{\sim}120$ months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. Conclusion: The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin cancer in elderly patients who achieved a good survival rate and few minor complications.