• Title/Summary/Keyword: 깊은 신경망

Search Result 65, Processing Time 0.031 seconds

Trends of Full 3D Human Reconstruction Technology Based on Image (이미지 기반 완전 3D 인간 복원 기술 동향)

  • Song, Dae-Young;Lee, HeeKyung;Seo, Jeongil;Cho, Donghyeon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.106-108
    • /
    • 2022
  • 이미지 기반 3D 형상 복원에 있어서, 이미지에 보이지 않는 폐색(Occlusion) 영역 부분에 대한 정보가 손실되므로 완전한 복원에 어려움이 있으며, 세밀한 텍스쳐(Texture) 표현이 이루어지지 않고 심한 평활화(Smoothing)나 고립된 노이즈 메쉬(Isolated Noise Mesh) 등 구조적 훼손이 발생한다. 주로 깊은 신경망을 이용하여, 음함수(Implicit Function) 기반 방법은 사전훈련이 완료된 보조 신경망들을 전면부에 배치하거나, Hourglass 등 임베딩(Embedding) 아키텍처를 추가하거나, 또는 표면 법선(Surface Normal)과 같은 환시(Hallucination)를 생성하여 신경망에 입력하기도 한다. 이 논문에서는, 인물의 이미지를 입력받아 색상, 머리카락 및 의상을 포함하는 완전 3D 인간 복원 기술들을 조망해본다.

  • PDF

Member Verification with Deep Learning-based Image Descriptors (깊은 인공 신경망 이미지 기술자를 활용하는 멤버 분류)

  • Jang, Young Kyun;Lee, Seok Hee;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.36-39
    • /
    • 2020
  • 최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 복잡한 특징을 담고 있는 얼굴 이미지에 대해 이를 적용하려는 시도가 늘어나고 있다. 특히, 이미지로부터 주요한 특징들을 추출하여 간결하게 이미지를 대표할 수 있는 이미지 기술자 (Image descriptor)를 딥 러닝을 통해 생성하는 연구가 인기를 끌고 있다. 이는 딥 러닝 끝 단에 있는 Fully-connected layer 의 출력으로 얻을 수 있으며 이미지의 의미론적 상관관계를 이용하여 학습된다. 구체적으로, 이미지 기술자는 실수형 벡터 데이터로서, 한 장의 이미지를 수치화 하여 비슷한 이미지 사이에는 벡터 거리가 가깝게, 서로 다른 이미지 사이에는 벡터 거리가 멀게 구성된다. 본 연구에서는 미리 학습된 인공 신경망을 통과시켜 얻은 얼굴 이미지 기술자를 활용하여 멤버 분류를 위한 두 개의 인공 신경망을 학습하는 것을 목표로 한다. 제안된 방법을 검증하기 위해 얼굴 인식에 널리 사용되는 벤치 마크 데이터셋을 활용하였고, 그 결과 제안된 방법이 높은 정확도로 멤버를 분류할 수 있다는 것을 확인하였다.

  • PDF

Large-Scale Text Classification with Deep Neural Networks (깊은 신경망 기반 대용량 텍스트 데이터 분류 기술)

  • Jo, Hwiyeol;Kim, Jin-Hwa;Kim, Kyung-Min;Chang, Jeong-Ho;Eom, Jae-Hong;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.322-327
    • /
    • 2017
  • The classification problem in the field of Natural Language Processing has been studied for a long time. Continuing forward with our previous research, which classifies large-scale text using Convolutional Neural Networks (CNN), we implemented Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU). The experiment's result revealed that the performance of classification algorithms was Multinomial Naïve Bayesian Classifier < Support Vector Machine (SVM) < LSTM < CNN < GRU, in order. The result can be interpreted as follows: First, the result of CNN was better than LSTM. Therefore, the text classification problem might be related more to feature extraction problem than to natural language understanding problems. Second, judging from the results the GRU showed better performance in feature extraction than LSTM. Finally, the result that the GRU was better than CNN implies that text classification algorithms should consider feature extraction and sequential information. We presented the results of fine-tuning in deep neural networks to provide some intuition regard natural language processing to future researchers.

Power Plant Turbine Blade Anomaly Detection using Deep Neural Network-based Object Detection (깊은 신경망 기반 객체 검출을 이용한 발전 설비 터빈 블레이드 이상 탐지)

  • Yu, Jongmin;Lee, Jangwon;Oh, Hyeontaek;Park, Sang-Ki;Yang, Jinhong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • Due to the increase in the demand for anomaly detection according to the ageing of power generation facilities, the need for developing an anomaly detection method that can provide high-reliability turbine blade anomaly detection performance has been continuously raised. Additionally, the false detection results caused by a human error accelerates the increase of the need. In this paper, we propose an anomaly detection technique for turbine blades in power plants using deep neural networks. Experimental results prove that the proposed technique achieves stable anomaly detection performance while minimizing human factor intervention.

Prediction of Deep Excavation-induced Ground Surface Movements Using Artificial Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.53-65
    • /
    • 2004
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network(ANN) technique, which is of prime importance in the damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements, was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Artificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effective for a first-order prediction of ground movements associated with deep-excavation.

A Study on Development of Artificial Neural Network (ANN) for Deep Excavation Design (깊은굴착 설계를 위한 인공신경망 개발에 관한 연구)

  • Yoo, Chungsik;Yang, Jaewon;Abbas, Qaisar;Aizaz, Haider Syed
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.199-212
    • /
    • 2018
  • This research concerns the prediction method for ground movement and wall member force due to determination structural stability check and failure check during deep excavation construction. First, research related with excavation influence parameters is conducted. Then, numerical analysis for various excavation conditions were conducted using Finite Element Method and Beam-column elasto-plasticity method. Excavation analysis database was then constructed. Using this database, development of ANN (artificial neural network) was performed for each ground movements and using structural member forces. By comparing the numerical analysis results with ANN's prediction, it is validated that development of ANN can be used efficient for prediction of ground movement and structural member forces in deep excavation site.

Training Network Design Based on Convolution Neural Network for Object Classification in few class problem (소 부류 객체 분류를 위한 CNN기반 학습망 설계)

  • Lim, Su-chang;Kim, Seung-Hyun;Kim, Yeon-Ho;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.144-150
    • /
    • 2017
  • Recently, deep learning is used for intelligent processing and accuracy improvement of data. It is formed calculation model composed of multi data processing layer that train the data representation through an abstraction of the various levels. A category of deep learning, convolution neural network is utilized in various research fields, which are human pose estimation, face recognition, image classification, speech recognition. When using the deep layer and lots of class, CNN that show a good performance on image classification obtain higher classification rate but occur the overfitting problem, when using a few data. So, we design the training network based on convolution neural network and trained our image data set for object classification in few class problem. The experiment show the higher classification rate of 7.06% in average than the previous networks designed to classify the object in 1000 class problem.

Seasonal Images Classification with Convolutional Neural Networks (컨볼루션 신경망을 사용한 계절 이미지 분류)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.444-447
    • /
    • 2022
  • In recent years, computer vision image classification tasks have become faster and better due to deeper neural network architectures. But while most image classification tasks are designed to classify images based on specific image features (such as distinguishing between cats and dogs), there are not many classification models that have been trained to distinguish between time periods such as day and night or different seasons of the year. And while some research has been done into distinguishing between seasons in images of the same location, this paper presents a varied approach to the problem of seasonal classification of generic images. Three methods for seasonal image classification, from simple feature extraction, to building a convolutional neural network, to transfer learning were studied and the accuracy results were compared and analyzed.

  • PDF

Design of CNN with MLP Layer (MLP 층을 갖는 CNN의 설계)

  • Park, Jin-Hyun;Hwang, Kwang-Bok;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

Intra Prediction Using Multiple Models Based on Fully Connected Layer (완전연결계층 기반의 다중 모델을 이용한 화면내 예측)

  • Kim, Minjae;Moon, Gihwa;Park, Dohyeon;Kwon, Hyoungjin;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.355-356
    • /
    • 2021
  • 딥러닝 기술과 하드웨어의 발전으로 다양한 분야에서 인공신경망과 관련한 연구가 활발히 진행되고 있다. 비디오 코덱 부분에서도 딥러닝 기술을 적용하는 부호화 기술이 많이 연구되고 있다. 본 논문은 최근 완료된 VVC 에 채택된 신경망 기반의 기술인 MIP(Matrix Weighted Intra Prediction)를 확장하여 보다 깊은 계층의 모델로 학습된 새로운 화면내 예측 모델을 제안한다. 기존 VVC 의 MIP 의 성능과 비교하기 위하여 기존 MIP 모델과 제안하는 다중완전연결계층(Fully Connected Layer) 화면내 예측 모델을 HEVC(High Efficiency Video Coding)에 적용하여 그 성능을 비교하였다. 실험결과 제안기법은 VVC MIP 대비 0.08 BD-rate 성능 향상을 보였다.

  • PDF