• 제목/요약/키워드: 깊은 신경망

검색결과 65건 처리시간 0.02초

깊은 신경망 기반의 전이학습을 이용한 사운드 이벤트 분류 (Sound event classification using deep neural network based transfer learning)

  • 임형준;김명종;김회린
    • 한국음향학회지
    • /
    • 제35권2호
    • /
    • pp.143-148
    • /
    • 2016
  • 깊은 신경망은 데이터의 특성을 효과적으로 나타낼 수 있는 방법으로 최근 많은 응용 분야에서 활용되고 있다. 하지만, 제한적인 양의 데이터베이스는 깊은 신경망을 훈련하는 과정에서 과적합 문제를 야기할 수 있다. 본 논문에서는 풍부한 양의 음성 혹은 음악 데이터를 이용한 전이학습을 통해 제한적인 양의 사운드 이벤트에 대한 깊은 신경망을 효과적으로 훈련하는 방법을 제안한다. 일련의 실험을 통해 제안하는 방법이 적은 양의 사운드 이벤트 데이터만으로 훈련된 깊은 신경망에 비해 현저한 성능 향상이 있음을 확인하였다.

Deep Learning: 기계학습의 새로운 트랜드

  • 김인중
    • 정보와 통신
    • /
    • 제31권11호
    • /
    • pp.52-57
    • /
    • 2014
  • Deep learning은 많은 수의 계층으로 이루어진 깊은 신경망을 학습하기 위한 연구 분야이다. 지난 수 년 동안 deep learning은 다양한 분야에 적용되어 기존 방법들을 능가하는 높은 성능을 보였으며, 그 결과 기계학습 및 패턴인식 분야에서 가장 중요한 기술적 트랜드가 되어가고 있다. 깊은 신경망의 장점과 그 동안 깊은 신경망의 학습이 어려웠던 이유를 설명하고 이러한 어려움을 극복한 새로운 알고리즘들을 소개한다. 마지막으로 deep learning의 성공적 응용 사례에 대해 소개한다.

깊은 신경망을 이용한 오디오 이벤트 검출 (Audio Event Detection Using Deep Neural Networks)

  • 임민규;이동현;박호성;김지환
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.183-190
    • /
    • 2017
  • 본 논문에서는 깊은 신경망을 이용한 오디오 이벤트 검출 방법을 제안한다. 오디오 입력의 매 프레임에 대한 오디오 이벤트 확률을 feed-forward 신경망을 적용하여 생성한다. 매 프레임에 대하여 멜 스케일 필터 뱅크 특징을 추출한 후, 해당 프레임의 전후 프레임으로부터의 특징벡터들을 하나의 특징벡터로 결합하고 이를 feed-forward 신경망의 입력으로 사용한다. 깊은 신경망의 출력층은 입력 프레임 특징값에 대한 오디오 이벤트 확률값을 나타낸다. 연속된 5개 이상의 프레임에서의 이벤트 확률값이 임계값을 넘을 경우 해당 구간이 오디오 이벤트로 검출된다. 검출된 오디오 이벤트는 1초 이내에 동일 이벤트로 검출되는 동안 하나의 오디오 이벤트로 유지된다. 제안된 방법으로 구현된 오디오 이벤트 검출기는 UrbanSound8K와 BBC Sound FX자료에서의 20개 오디오 이벤트에 대하여 71.8%의 검출 정확도를 보였다.

깊은 잔차 U-Net 구조를 이용한 실제 카메라 잡음 영상 디노이징 (Real-world noisy image denoising using deep residual U-Net structure)

  • 장영실;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.119-121
    • /
    • 2019
  • 부가적 백색 잡음 모델(additive white Gaussian noise, AWGN에서 학습된 깊은 신경만 (deep neural networks)을 이용한 잡음 제거기는 제거하려는 잡음이 AWGN인 경우에는 뛰어난 성능을 보이지만 실제 카메라 잡음에 대해서 잡음 제거를 시도하였을 때는 성능이 크게 저하된다. 본 논문은 U-Net 구조의 깊은 인공신경망 모델에 residual block을 결합함으로서 실제 카메라 영상에서 기존 알고리즘보다 뛰어난 성능을 지니는 신경망을 제안하다. 제안한 방법을 통해 Darmstadt Noise Dataset에서 PSNR과 SSIM 모두 CBDNet 대비 향상됨을 확인하였다.

  • PDF

얼굴 이미지 검색을 위한 Product Quantization 기반의 깊은 신경망 피쳐 매칭 (Pedestrian Detection using YOLO and Tracking)

  • 장영균;이석희;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.246-248
    • /
    • 2019
  • 최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 컴퓨터 비전의 중요한 문제 중 하나인 이미지 검색에도 이를 활용하고 있다. 특히, 이미지 검색에 사용할 수 있는 이미지 기술자 (Image descriptor)를 깊은 신경망 구조의 일부분인 Fully-connected layer에서 추출하여 사용하는 방법들이 제시되고 있고, 이를 위해 알맞은 목적함수를 설계하여 깊은 신경망을 학습하는 것이 중요해지고 있다. 딥 러닝을 통해 얻은 이미지 기술자는 실수형 데이터로서, 한 장의 이미지를 수치화하여 표현하는 데 많은 메모리를 소모하게 된다. 이를 보완하기 위해 이미지 기술자를 작은 용량의 이진코드로 mapping 하는 해싱 (hashing) 이라는 과정이 필수적이나 이에 따른 한계점이 발생한다. 본 연구에서는 실수형 데이터가 갖는 거리 계산에서의 이점과 이진코드의 장점을 동시에 살릴 수 있는 Product Quantization 방식의 이미지 검색 방법을 이용하여 한계점을 극복하였다. 우리는 제안한 방법을 얼굴 이미지 데이터 셋에 실험하였고 기존 방식보다 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF

깊은 신경망에서 단일 중간층 연결을 통한 물체 분할 능력의 심층적 분석 (Investigating the Feature Collection for Semantic Segmentation via Single Skip Connection)

  • 임종화;손경아
    • 정보과학회 논문지
    • /
    • 제44권12호
    • /
    • pp.1282-1289
    • /
    • 2017
  • 최근 심층 컨볼루션 신경망을 활용한 이미지 분할과 물체 위치감지 연구가 활발히 진행되고 있다. 특히 네트워크의 최상위 단에서 추출한 특징 지도뿐만 아니라, 중간 은닉 층들에서 추출한 특징 지도를 활용하면 더욱 정확한 물체 감지를 수행할 수 있고 이에 대한 연구 또한 활발하게 진행되고 있다. 이에 밝혀진 경험적 특성 중 하나로 중간 은닉 층마다 추출되는 특징 지도는 각기 다른 특성을 가지고 있다는 것이다. 그러나 모델이 깊어질수록 가능한 중간 연결과 이용할 수 있는 중간 층 특징 지도가 많아지는 반면, 어떠한 중간 층 연결이 물체 분할에 더욱 효과적일지에 대한 연구는 미비한 상황이다. 또한 중간층 연결 방식 및 중간층의 특징 지도에 대한 정확한 분석 또한 부족한 상황이다. 따라서 본 연구에서 최신 깊은 신경망에서 중간층 연결의 특성을 파악하고, 어떠한 중간 층 연결이 물체 감지에 최적의 성능을 보이는지, 그리고 중간 층 연결마다 특징은 어떠한지 밝혀내고자 한다. 그리고 이전 방식에 비해 더 깊은 신경망을 활용하는 물체 분할의 방법과 중간 연결의 방향을 제시한다.

합성곱 신경망 기반의 차량 번호판 인식 시스템 (Convolutional Neural Network based Vehicle License Plate Recognition System)

  • 임성훈;이재흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.749-752
    • /
    • 2018
  • 깊은 신경망 모델을 이용한 차량 번호판 검출과 번호판 문자 인식 시스템을 제안한다. 차량 번호판 인식 시스템은 세 가지 종류의 깊은 신경망 모델로 구성된다. 기존의 영상처리 기반의 차량 번호판 검출과 문자 인식을 전부 신경망으로 대체함으로써 영상의 밝기, 회전, 왜곡 등의 변형에 강인한 성능을 얻을 수 있다. 차량 번호판 검출률은 99.3%, 문자 영역 검출률은 99%, 문자 인식률을 98.5%를 얻었다.

잔차 블록 기반의 깊은 합성곱 신경망을 통한 단일 영상 초해상도 복원 (Image Super-Resolution Using Deep Convolutional Neural Networks Based on Residual Blocks)

  • 김인구;유송현;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.62-65
    • /
    • 2018
  • 신경망은 깊어질수록 gradient vanishing/exploding과 같은 네트워크가 불안정해지는 문제가 발생 한다. 잔차 블록을 이용하여 이러한 문제를 해결 할 수 있다. 본 논문에서는 영상 인식 분야에서 훌륭한 성능을 보여준 잔차 블록 기반의 깊은 합성곱 신경망을 통한 단일 영상 초해상도 복원 기법을 제안 한다. 제안한 알고리듬은 EDSR에 사용된 잔차 블록을 다양한 크기의 합성곱 연산을 통해 영상의 특징들을 다르게 분석하도록 수정하고 VDSR과 비슷한 수준의 복잡도로 구성하여 향상된 성능을 얻었다. 실험 결과, VDSR에 비해 PSNR이 최대 0.1dB까지 증가했다.

  • PDF

깊은 신경망을 이용한 구조물의 유한요소모델 업데이팅 (Finite Element Model Updating of Structures Using Deep Neural Network)

  • 공밍;박원석
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.147-154
    • /
    • 2019
  • 유한요소모델 업데이팅은 계측에 의한 구조물의 실제 응답과 가장 가까운 응답을 내는 유한요소모델의 매개변수를 찾는 문제로 정의할 수 있다. 기존 연구에서는 실 구조물과 해석 모델의 응답의 오차를 최소화하는 최적화에 기반 한 방법이 개발되었다. 이 연구에서는 목표 모드 정보로부터 유한요소 모델의 매개변수를 직접 얻을 수 있는 역 고유치 문제를 구성하고 역 고유치 문제를 빠르고 정확하게 풀기 위한 깊은 신경망(Deep Neural Network)을 구성하는 방법을 제안한다. 개발한 방법의 적용 예로서 현수교의 역 고유치 함수를 모사하는 신경망을 이용한 동적 유한요소모델 업데이트를 보인다. 해석 결과 제시한 방법은 매우 높은 정확도로 목표 모드에 대응하는 매개변수를 찾아낼 수 있음을 보였다.

DenseNet 기반의 이미지 압축 (DenseNet based Image Compression)

  • 박운성;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.272-275
    • /
    • 2018
  • 본 논문에서는 기존 신경망 기반의 이미지 압축에 많이 사용되었던 신경망인 ResNet 을 대신하여 더 적은 개수의 파라미터를 사용하여 좋은 성능을 낼 수 있는 신경망 구조인 DenseNet 을 이미지 압축에 사용한다. 이미지 압축을 위해 사용되는 신경망 구조는 일반적으로 오토 인코더 구조인데, 병목 층에서 정보 손실이 상당히 많이 발생한다. 따라서 이미지 압축에서 신경망 내에서의 정보 전달은 상당히 중요하다. 기존의 논문에서는 이를 위해 이전의 정보를 그대로 뒤로 전달해주는 구조인 ResNet 을 사용하여 깊은 층에 대해서도 수렴이 잘 되는 결과를 보여주었다. 그러나 많은 수의 파라미터를 사용하는 단점을 해결하기 위해 본 논문에서는 DenseNet 을 이미지 압축에 사용하였고, 병목 층에서의 정보 손실로 인해 이미지의 고주파수 성분이 사라지는 현상을 해결하기 위해 원래 이미지와 JPEG2000 으로 압축한 이미지와의 차이를 추가 입력으로 넣어주어서 주관적인 화질을 개선하였다.

  • PDF