깊은 신경망은 데이터의 특성을 효과적으로 나타낼 수 있는 방법으로 최근 많은 응용 분야에서 활용되고 있다. 하지만, 제한적인 양의 데이터베이스는 깊은 신경망을 훈련하는 과정에서 과적합 문제를 야기할 수 있다. 본 논문에서는 풍부한 양의 음성 혹은 음악 데이터를 이용한 전이학습을 통해 제한적인 양의 사운드 이벤트에 대한 깊은 신경망을 효과적으로 훈련하는 방법을 제안한다. 일련의 실험을 통해 제안하는 방법이 적은 양의 사운드 이벤트 데이터만으로 훈련된 깊은 신경망에 비해 현저한 성능 향상이 있음을 확인하였다.
Deep learning은 많은 수의 계층으로 이루어진 깊은 신경망을 학습하기 위한 연구 분야이다. 지난 수 년 동안 deep learning은 다양한 분야에 적용되어 기존 방법들을 능가하는 높은 성능을 보였으며, 그 결과 기계학습 및 패턴인식 분야에서 가장 중요한 기술적 트랜드가 되어가고 있다. 깊은 신경망의 장점과 그 동안 깊은 신경망의 학습이 어려웠던 이유를 설명하고 이러한 어려움을 극복한 새로운 알고리즘들을 소개한다. 마지막으로 deep learning의 성공적 응용 사례에 대해 소개한다.
본 논문에서는 깊은 신경망을 이용한 오디오 이벤트 검출 방법을 제안한다. 오디오 입력의 매 프레임에 대한 오디오 이벤트 확률을 feed-forward 신경망을 적용하여 생성한다. 매 프레임에 대하여 멜 스케일 필터 뱅크 특징을 추출한 후, 해당 프레임의 전후 프레임으로부터의 특징벡터들을 하나의 특징벡터로 결합하고 이를 feed-forward 신경망의 입력으로 사용한다. 깊은 신경망의 출력층은 입력 프레임 특징값에 대한 오디오 이벤트 확률값을 나타낸다. 연속된 5개 이상의 프레임에서의 이벤트 확률값이 임계값을 넘을 경우 해당 구간이 오디오 이벤트로 검출된다. 검출된 오디오 이벤트는 1초 이내에 동일 이벤트로 검출되는 동안 하나의 오디오 이벤트로 유지된다. 제안된 방법으로 구현된 오디오 이벤트 검출기는 UrbanSound8K와 BBC Sound FX자료에서의 20개 오디오 이벤트에 대하여 71.8%의 검출 정확도를 보였다.
부가적 백색 잡음 모델(additive white Gaussian noise, AWGN에서 학습된 깊은 신경만 (deep neural networks)을 이용한 잡음 제거기는 제거하려는 잡음이 AWGN인 경우에는 뛰어난 성능을 보이지만 실제 카메라 잡음에 대해서 잡음 제거를 시도하였을 때는 성능이 크게 저하된다. 본 논문은 U-Net 구조의 깊은 인공신경망 모델에 residual block을 결합함으로서 실제 카메라 영상에서 기존 알고리즘보다 뛰어난 성능을 지니는 신경망을 제안하다. 제안한 방법을 통해 Darmstadt Noise Dataset에서 PSNR과 SSIM 모두 CBDNet 대비 향상됨을 확인하였다.
최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 컴퓨터 비전의 중요한 문제 중 하나인 이미지 검색에도 이를 활용하고 있다. 특히, 이미지 검색에 사용할 수 있는 이미지 기술자 (Image descriptor)를 깊은 신경망 구조의 일부분인 Fully-connected layer에서 추출하여 사용하는 방법들이 제시되고 있고, 이를 위해 알맞은 목적함수를 설계하여 깊은 신경망을 학습하는 것이 중요해지고 있다. 딥 러닝을 통해 얻은 이미지 기술자는 실수형 데이터로서, 한 장의 이미지를 수치화하여 표현하는 데 많은 메모리를 소모하게 된다. 이를 보완하기 위해 이미지 기술자를 작은 용량의 이진코드로 mapping 하는 해싱 (hashing) 이라는 과정이 필수적이나 이에 따른 한계점이 발생한다. 본 연구에서는 실수형 데이터가 갖는 거리 계산에서의 이점과 이진코드의 장점을 동시에 살릴 수 있는 Product Quantization 방식의 이미지 검색 방법을 이용하여 한계점을 극복하였다. 우리는 제안한 방법을 얼굴 이미지 데이터 셋에 실험하였고 기존 방식보다 뛰어난 성능을 보이는 것을 확인할 수 있었다.
최근 심층 컨볼루션 신경망을 활용한 이미지 분할과 물체 위치감지 연구가 활발히 진행되고 있다. 특히 네트워크의 최상위 단에서 추출한 특징 지도뿐만 아니라, 중간 은닉 층들에서 추출한 특징 지도를 활용하면 더욱 정확한 물체 감지를 수행할 수 있고 이에 대한 연구 또한 활발하게 진행되고 있다. 이에 밝혀진 경험적 특성 중 하나로 중간 은닉 층마다 추출되는 특징 지도는 각기 다른 특성을 가지고 있다는 것이다. 그러나 모델이 깊어질수록 가능한 중간 연결과 이용할 수 있는 중간 층 특징 지도가 많아지는 반면, 어떠한 중간 층 연결이 물체 분할에 더욱 효과적일지에 대한 연구는 미비한 상황이다. 또한 중간층 연결 방식 및 중간층의 특징 지도에 대한 정확한 분석 또한 부족한 상황이다. 따라서 본 연구에서 최신 깊은 신경망에서 중간층 연결의 특성을 파악하고, 어떠한 중간 층 연결이 물체 감지에 최적의 성능을 보이는지, 그리고 중간 층 연결마다 특징은 어떠한지 밝혀내고자 한다. 그리고 이전 방식에 비해 더 깊은 신경망을 활용하는 물체 분할의 방법과 중간 연결의 방향을 제시한다.
깊은 신경망 모델을 이용한 차량 번호판 검출과 번호판 문자 인식 시스템을 제안한다. 차량 번호판 인식 시스템은 세 가지 종류의 깊은 신경망 모델로 구성된다. 기존의 영상처리 기반의 차량 번호판 검출과 문자 인식을 전부 신경망으로 대체함으로써 영상의 밝기, 회전, 왜곡 등의 변형에 강인한 성능을 얻을 수 있다. 차량 번호판 검출률은 99.3%, 문자 영역 검출률은 99%, 문자 인식률을 98.5%를 얻었다.
신경망은 깊어질수록 gradient vanishing/exploding과 같은 네트워크가 불안정해지는 문제가 발생 한다. 잔차 블록을 이용하여 이러한 문제를 해결 할 수 있다. 본 논문에서는 영상 인식 분야에서 훌륭한 성능을 보여준 잔차 블록 기반의 깊은 합성곱 신경망을 통한 단일 영상 초해상도 복원 기법을 제안 한다. 제안한 알고리듬은 EDSR에 사용된 잔차 블록을 다양한 크기의 합성곱 연산을 통해 영상의 특징들을 다르게 분석하도록 수정하고 VDSR과 비슷한 수준의 복잡도로 구성하여 향상된 성능을 얻었다. 실험 결과, VDSR에 비해 PSNR이 최대 0.1dB까지 증가했다.
유한요소모델 업데이팅은 계측에 의한 구조물의 실제 응답과 가장 가까운 응답을 내는 유한요소모델의 매개변수를 찾는 문제로 정의할 수 있다. 기존 연구에서는 실 구조물과 해석 모델의 응답의 오차를 최소화하는 최적화에 기반 한 방법이 개발되었다. 이 연구에서는 목표 모드 정보로부터 유한요소 모델의 매개변수를 직접 얻을 수 있는 역 고유치 문제를 구성하고 역 고유치 문제를 빠르고 정확하게 풀기 위한 깊은 신경망(Deep Neural Network)을 구성하는 방법을 제안한다. 개발한 방법의 적용 예로서 현수교의 역 고유치 함수를 모사하는 신경망을 이용한 동적 유한요소모델 업데이트를 보인다. 해석 결과 제시한 방법은 매우 높은 정확도로 목표 모드에 대응하는 매개변수를 찾아낼 수 있음을 보였다.
본 논문에서는 기존 신경망 기반의 이미지 압축에 많이 사용되었던 신경망인 ResNet 을 대신하여 더 적은 개수의 파라미터를 사용하여 좋은 성능을 낼 수 있는 신경망 구조인 DenseNet 을 이미지 압축에 사용한다. 이미지 압축을 위해 사용되는 신경망 구조는 일반적으로 오토 인코더 구조인데, 병목 층에서 정보 손실이 상당히 많이 발생한다. 따라서 이미지 압축에서 신경망 내에서의 정보 전달은 상당히 중요하다. 기존의 논문에서는 이를 위해 이전의 정보를 그대로 뒤로 전달해주는 구조인 ResNet 을 사용하여 깊은 층에 대해서도 수렴이 잘 되는 결과를 보여주었다. 그러나 많은 수의 파라미터를 사용하는 단점을 해결하기 위해 본 논문에서는 DenseNet 을 이미지 압축에 사용하였고, 병목 층에서의 정보 손실로 인해 이미지의 고주파수 성분이 사라지는 현상을 해결하기 위해 원래 이미지와 JPEG2000 으로 압축한 이미지와의 차이를 추가 입력으로 넣어주어서 주관적인 화질을 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.