본 논문은 의학분야에서 주로 사용되는 메타분석 중 그룹화 임의효과 모형(grouped random effects model)을 프라빗 연결함수(probit link function)를 이용하여 베이즈적 관점에서 연구하였다. 이때 프라빗 함수를 강요하기 위해 잠재변수를 정의하였고, 사전 분포를 달리한 세가지 모형을 고려하였다. 주어진 세가지 모형들에게서 적합한 모형 선택을 위하여 베이즈 인자(Bayes factor, BF)와 유사베이즈 인자(pseudo-Bayes factor, PsBF)를 이용하였다. 깁스샘플러와 메트로폴리스 알고리즘을 이용하여 베이지안 계산상의 어려움을 해결하였다. 예로써, 새로운 간질약에 대한 효과를 조사하기 위하여 앞에서 제시된 방법으로 해석하였다.
순서화된 척도모수들의 사전정보를 가지는 k-모집단 와이블분포의 모수추정을 위한 베이지안방법이 제시된다. 모수추정은 깁스샘플링에 의해서 이루어지며, 특히 깁스샘플러에서 형태모수의 조건부 사후분포는 로그-오목함수이므로 적응기각표집(Adaptive Rejection Sampling: ARS)방법에 의해 모수생성을 하였다. 논의된 모수추정법을 전기 절연유체 고장시간자료에 적용하여 척도모수의 순서화정보를 반영한 경우와 그렇지 않은 경우를 비교하였다.
자산가격의 비대칭적 변동을 설명하기 위해 최근 비대칭적 점프확산 모형이 제안되었다. 본 논문에서는 이러한 자산가격 모형을 분석하는데 사용되는 효율적인 베이지안 방법을 제안한다. 본 논문에서 제안되는 방법은 모형 요소가 쉽게 추출되는 편의성을 희생하지 않으면서도 조건부 분포들간의 함수적 비호환성을 통해 효율성을 향상시킬 수 있는 부분붕괴 깁스 샘플러를 고안함으로써 개발되었다. 제안된 방법은 모의실험 자료에 적용되어 그 효율성을 검증하였고 1980년 9월부터 2014년 8월까지 관찰된 일별 S&P 500 자료에 적용되었다.
본 논문에서는 지수생존 모형의 형태들로써 단순 지수모형, 변환 점 지수모형과 유한 혼합 지수모형 등 세 가지 모형을 소개한다. 이러한 모형들 중에서, 최적의 모형을 찾기 위하여 Gelfand와 Ghosh(1998)의 방법을 이용한 모형 선택 방법을 제안한다. 이때, 계산상의 어려움을 피하기 위하여 자료 확장 기법(Tanner와 Wong, 1987)과 깁스 샘플러(Gelfand와 Smith, 1990)를 사용하였다. 제안된 베이지안 방법을 설명하기 위하여 모의 실험 자료와Stangl의 항 우울제 자료에 적용한다. 모형 선택 방법은 사전 분포와 모형 선택 기준의 가중치에 민감하지 않다는 것을 제한된 우리의 실험으로 알 수 있었다.
본 연구에서는 2-모수 파레토분포에 대해 무정보사전분포인 준거사전분포의 가정 하에서 객관적 베이지안 모수추정 절차를 제안하였다. 베이지안 추정은 깁스샘플링에 의해서 수행된다. 깁스샘플러에서 모수생성하는 방법은 형태모수는 감마분포로부터 생성하고 척도모수는 적응기각표집 알고리즘에 의해 생성한다. 제안된 베이지안 모수추정 절차는 모의실험과 자료분석에서 기존의 추정방법들인 L-적률추정법, 최우추정법, 공액사전분포 하의 주관적 베이지안 모수추정법과 비교된다.
비대칭 점프확산 모형은 자산 가격의 비대칭적 변동을 효과적으로 설명하는 모형으로 활용되어 왔다. 그러나 다변량 모형으로 확장한 다변량 비대칭 라플라스 점프확산 모형은 가능도함수가 닫힌 해로 존재하지 않아 모형의 추론에 한계가 존재하였다. 본 논문에서는 이러한 한계점을 극복하기 위해 자료 확장 기법을 제안하고 새로운 베이지안 추론 방법을 개발한다. 본 논문에서 제안된 모형은 단일 점프와 공통 점프 뿐만 아니라 모든 가능한 조합으로 발생하는 점프를 반영한 확장된 다변량 비대칭 라플라스 점프확산 모형이다. 이러한 모형을 분석하기 위해 붕괴된 깁스 샘플러를 고안한 베이지안 방법을 개발하였다. 본 논문에서 제안된 모형과 방법을 모의실험 자료 및 2005년 1월 3일부터 2015년 9월 30일까지 관찰된 일별 KOSPI, S&P500, 그리고 Nikkei225에 적용하여 효율성을 검증하였다.
Rao와 Yu(1994)는 소지역 추정(small area estimation) 문제를 해결하기 위한 방법으로 추정 시점과 인접지역 정보 등 보조정보와 과걱의 표본조사 결과를 모두 이용하는 모형과 그 모형으로 부터 경험적최량선형비편향추정량(Empirical Best Unbiased Predictor)을 제안하였다. 본 논문에서는 Rao와 Yu의 모형에서 미지의 모수에 대한 사전확률분포를 가정한 계층적 베이즈 추정량을 제안하고, 이를 미국의 주별 4인가족 소득추정문제에 적용하여 그 효율을 미국의 Census Bureau에서 사용하고 있는 경험적 베이즈추정량 및 이전에 제안된 다른 추정량들과 비교하였다.
분포함수의 모수가 순서제약조건을 갖는 경우에 깁스샘플러(Gibbs sampler)를 이용한 모수 추정에 관해 논의하였다. 순서화 모수를 갖는 지수분포족 및 이항분포모형을 고려하고 완전조건부 분포를 유도하였으며 순서제약 조건을 만족하는 표본추출을 위해 일 대 일 대응 추출 알고리즘을 적용하였다. 동위회귀 최우추정량 및 동위베이지안 추정량과 그 결과를 비교하였다.
메타분석(Meta-analysis)은 서로 독립적으로 연구되어진 결과들을 전체적인 하나의 결과로 도출하기 위해 사용되어지는 통계적 방법이다. 이러한 통계적 방법을 설명할 모형으로는 선택모형(selection model)을 포함한 계층적 모형(hierarchical model)을 사용하며, 이러한 모형들은 베이지안 메타분석에 유용한 것으로 알려져 있다. 그러나, 메타분석의 자료들은 일반적으로 출판편의(publication bias)를 갖고 있으므로 이를 극복하고자 가중함수(weight function)를 이용하여 분포함수를 새롭게 정의하여 사용한다. 최근에 Silliman(1997)은 계층적 모형(hierarchical model)에 가중함수를 첨부한 계층적 선택모형(hierarchical selection model)을 정의하고 모수적 베이지안 방법을 제시하였다. 본 연구에서는 미관측된 연구효과에 디리슈레 과정 사전분포(Dirichlet process prior)를 적용한 준모수적 계층적 선택모형(semiparametric hierarchical selection models)을 소개한다. 여기서 제시된 준모수적 계층적 선택모형을 베이지안 방법으로 추정하기 위하여 마코프 연쇄 몬테칼로(Markov chain Monte Carlo)방법을 이용한다. 제시된 방법을 적용하기 위하여 실제 자료(Johnson, 1993)인 충치를 예방하기 위한 두 가지의 예방약의 효과에 대한 차이를 비교하기 위해 얻어진 12개의 연구를 이용하여 메타분석을 한다.
이 논문은 다중 스케일 베이지안 관점에서 다층 퍼셉트론과 마코프 랜덤 필드를 사용한 새로운 결 분할 방법을 제안한다. 다층 퍼셉트론의 출력은 사후 확률을 모델링하므로 본 논문에서는 다중 스케일 웨이블릿 계수들을 다층 퍼셉트론의 입력으로 사용한다. 다층 퍼셉트론으로부터 구한 사후 확률과 MAP (maximum a posterior) 분류를 이용하여 각 스케일에서 결 분류를 수행한다. 또한 가장 섬세한 스케일에서 더 개선된 분할 결과를 얻기 위하여 모든 스케일에서 MAP 분류 결과들을 거친 스케일에서 섬세한 스케일까지 차례로 융합한다. 이런 과정은 한 스케일에서의 분류 정보와 그 인접한 보다 거친 스케일에서 얻어지는 문맥과 관련한 연역적 정보를 이용하여 MAP 분류를 행함으로써 이루어진다. 이 융합 과정에서, MRF (Markov random fields) 사전 모델이 평탄화 제한자로서 동작하고, 깁스 샘플러 (Gibbs sampler)는 MAP 분류기로서 동작한다. 제안한 분할 방법은 HMT (Hidden Markov Trees) 모델과 HMTseg 알고리즘을 이용한 결 분할 방법보다 더 좋은 성능을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.