• 제목/요약/키워드: 깁스표집

검색결과 7건 처리시간 0.022초

순서를 갖는 척도모수들의 사전정보 하에 k-모집단 와이블분포의 베이지안 모수추정 (Bayesian Estimation of k-Population Weibull Distribution Under Ordered Scale Parameters)

  • 손영숙;김성욱
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.273-282
    • /
    • 2003
  • 순서화된 척도모수들의 사전정보를 가지는 k-모집단 와이블분포의 모수추정을 위한 베이지안방법이 제시된다. 모수추정은 깁스샘플링에 의해서 이루어지며, 특히 깁스샘플러에서 형태모수의 조건부 사후분포는 로그-오목함수이므로 적응기각표집(Adaptive Rejection Sampling: ARS)방법에 의해 모수생성을 하였다. 논의된 모수추정법을 전기 절연유체 고장시간자료에 적용하여 척도모수의 순서화정보를 반영한 경우와 그렇지 않은 경우를 비교하였다.

2-모수 파레토분포의 객관적 베이지안 추정 (Objective Bayesian Estimation of Two-Parameter Pareto Distribution)

  • 손영숙
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.713-723
    • /
    • 2013
  • 본 연구에서는 2-모수 파레토분포에 대해 무정보사전분포인 준거사전분포의 가정 하에서 객관적 베이지안 모수추정 절차를 제안하였다. 베이지안 추정은 깁스샘플링에 의해서 수행된다. 깁스샘플러에서 모수생성하는 방법은 형태모수는 감마분포로부터 생성하고 척도모수는 적응기각표집 알고리즘에 의해 생성한다. 제안된 베이지안 모수추정 절차는 모의실험과 자료분석에서 기존의 추정방법들인 L-적률추정법, 최우추정법, 공액사전분포 하의 주관적 베이지안 모수추정법과 비교된다.

인도부페 프로세스의 소개: 이론과 응용 (Introduction to the Indian Buffet Process: Theory and Applications)

  • 이영선;이경재;이광민;이재용;서진욱
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.251-267
    • /
    • 2015
  • 인도부페 프로세스는 유한개의 행과 무한개의 열로 이루어진 이진행렬의 분포와 관련된 확률과정이다. 무한특성모형을 유한개의 행과 무한개의 열로 이루어진 이진행렬을 이용해서 표현할 때, 이진행렬에 대한 사전분포로써 인도부페 프로세스가 이용될 수 있다. 본 논문에서는 인도부페 프로세스를 유한특성모형과 연관지어서 유도하는 방법을 소개하고, 베타프로세스와의 관련성을 간략히 설명한다. 실제 모형의 추론에 인도부페 프로세스가 이용되는 예제를 살펴보기 위해서 가우시안 선형모형에 인도부페 프로세스를 적용한 모형화 방법을 언급하고, 깁스표집 알고리즘, 막대 자르기 알고리즘, 변분방법을 이용한 추론방법을 설명한다. 그리고 이 세 가지 알고리즘을 이용하여 이미지 자료를 분석하는데 적용해본다. 나아가 쌍자료 분석, 네트워크 분석, 독립성분 분석에서 인도부페 프로세스가 어떻게 이용될 수 있는지도 알아본다.

로버스트 베이지안 메타분석 (Robust Bayesian meta analysis)

  • 최성미;김달호;신임희;김호각;김상경
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.459-466
    • /
    • 2011
  • 본 논문은 독립적으로 수행된 연구결과를 합쳐서 일반적인 결론을 도출하는 메타분석을 위한 로버스트 계층적 베이지안 모형을 고려한다. 사전정보가 정규분포를 따른다는 가정 대신 정규분포의 척도혼합을 사용하여 정규분포보다 더 두꺼운 꼬리를 가지는 사전분포를 사용한다. 나아가 개별 분석의 분산이 알려져 있지 않은 경우를 계층적 베이지안 모형에 포함하여 메타분석을 수행하고자 한다. 깁스 표집을 사용하여 추정값을 계산하고, 실제 자료를 사용하여 제안된 방법을 예시한다.

비모수 베이지안 겉보기 무관 회귀모형 (A nonparametric Bayesian seemingly unrelated regression model)

  • 조성일;석인혜;최태련
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.627-641
    • /
    • 2016
  • 본 논문에서는 겉보기 무관 회귀모형을 고려하고 디리크레 프로세스 혼합모형을 오차항의 분포로 하는 비모수 베이지안 방법을 제안한다. 제안된 모형을 바탕으로 사후분포를 유도하고 디리크레 프로세스 혼합모형의 붕괴깁스표집 방법을 통해 마코프 체인 몬테 칼로 알고리듬을 구성하고 사후추론을 실시한다. 모형의 성능을 비교하기 위해 모의실험을 실시하고, 더 나아가 한국지역의 강수량 예측에 대한 실제 자료에 적용해 본다.

군집 특정 변량효과를 포함한 유한 혼합 모형의 베이지안 분석 (Bayesian analysis of finite mixture model with cluster-specific random effects)

  • 이혜진;경민정
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.57-68
    • /
    • 2017
  • 대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.

변액연금보험의 최저연금적립금보증과 점프리스크 (Guaranteed Minimum Accumulated Benefit in Variable Annuities and Jump Risk)

  • 권용재;김소연
    • 한국콘텐츠학회논문지
    • /
    • 제20권11호
    • /
    • pp.281-291
    • /
    • 2020
  • 본 연구는 변액연금보험 보증준비금 산정을 위해 보험업감독업무시행세칙에 제시된 표준자산 등을 가우스-포와송 점프확산과정으로 추정해보고 점프위험에 대한 고려가 변액연금보험 최저연금적립금보증의 보증수수료율과 보증위험 측정에 미치는 영향을 살펴본다. KOSPI 200을 제외한 모든 자산의 수익률 분포가 두터운 꼬리(fat tail)를 가져 다수의 자산수익률에 점프가 존재하고 있음을 확인하였다. 변액연금보험의 최저연금적립금보증 현금흐름을 분석한 결과 국내주가지수와 해외주가지수(원화)는 점프위험을 고려할 경우 보증수수료율과 보증위험이 감소하며 이는 자산모형에 점프위험이 고려되면서 변동성이 감소하는 효과에 기인한 것이다. 반면 국내채권지수와 해외채권지수(원화)의 경우 점프위험 고려 시 래칫형 보증을 중심으로 보증수수료율과 보증위험의 수준이 다소 증가한다. 마지막으로 해외주가지수(달러화)와 해외채권지수(달러화)는 래칫형 보증을 중심으로 동종지수의 원화지수와 반대의 결과가 나타난다. 요컨대 수익률 점프를 고려하지 않을 경우 보증수수료율과 보증위험이 과소 또는 과대평가될 수 있음을 보여준다.