• Title/Summary/Keyword: 김상백

Search Result 127, Processing Time 0.031 seconds

UTS Designs and Experiments according to a Stand-off Technique using the Magnetostrictive Ultrasonic (자왜 초음파를 이용한 Stand-off 기술에 따른 UTS 설계 및 실험)

  • Koo Kil-Mo;Kim Sang-Baik;Kim Hee-Dong;Kang Hee-Young;Joung Young-Moo;Park Chi-Seong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.257-262
    • /
    • 2004
  • 본 논문에서는 초음파 웨이브렛 지연시간을 이용한 초고온 온도 측정법을 기초로 하여, 이 기술을 바탕으로 두 번째 단계인 용융물 온도에서 내구성을 갖는 초음파 센서(UTS : Ultrasonic Temperature Sense)를 설계하여 약 $2300^{\circ}C$까지 실험로 내부의 온도를 측정하고자 한다. 이때 UTS 설계의 중요 인수는 센서 봉 외부 표면과 시스(sheath) 내부 표면의 두 텅스텐 재료가 비접촉 상태로 요구된다. 만약 이들 두 재료가 고온의 상태에서 접촉되면 음향적 분로인 Shunting 현상이 발생한다. 이 현상을 물리적으로 억제하기 위한 센서 설계가 필요하게 되며, 이 센서 설계의 성공 여부의 첫째 요구 조건으로서 센서 내부의 구조적으로 음향 Shunting 현상을 억제하는 기술이 필요로 하게 된다. 이들 센서의 내부 구조에 상호 접촉을 피하기 위해서 작은 공간에 새롭게 구조적 분리가 가능한 텅스텐 재료인 Standoff를 제작하여 설치하였다. 그러나 본 실험에서는 제안된 Standoff적용한 출력 신호의 신호 대 잡음 비는 소량의 개선 가능성을 확인하였으나, 다양한 Standoff의 설계와 제작이 지속적으로 진행되어야 할 것이다.

  • PDF

Analysis of Natural Convection Heat Transfer and Solidification of a Two-Layered Pool (2층으로 성층화된 풀 내에서의 자연대류 열전달과 고화현상에 대한 연구)

  • Kim J.;Kang K. S.;Kim S. B.;Kim H. D.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • The natural convection heat transfer and solidification in a stratified pool are studied. The flow and heat transfer characteristics in a heat generating pool are compared between single-layered and double-layered pools. And local Nusselt number distributions on outer walls are obtained to consider thermal loads on a vessel wall. The cooling and solidification of Al₂O₃/Fe melt in a hemispherical vessel are simulated to study the mechanism of heat transfer and temperature distribution. A unstructured mesh is chosen for this study because of the non-orthogonality originated from the boundaries of double-layered pool. Interface between the layers is modeled to be fixed. With this assumption mass flux across the interface is neglected, but shear force and heat flux are considered by boundary conditions. The colocated cell-centered finite volume method is used with the Rhie-Chow interpolation to compute cell face velocity. To prevent non-physical solutions near walls in case body force is large the wall pressure is extrapolated by the way to include body force. The numerical solutions calculated by current method show that averaged downward heat flux of the double-layered pool increases compared to single-layered pool and maximum temperature occurs right below the interface of the layers.

  • PDF

The Characteristic Analysis and the Manufacture of Explosive THPP on PMD (PMD용 화약 THPP 제조 및 특성분석)

  • Kim, Sangbaek;Shim, Jungseob;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.84-89
    • /
    • 2016
  • THPP(Titanium Hydride Potassium Perchlorate) is an igniter composed of potassium perchlorate as oxidizing agent and titanium hydride as fuel with a Viton binder. THPP is commonly found in the aerospace, defence and automotive industries. This research is investigeted for the manufacturing process and characteristics analysis of the THPP such as the performance and shape/calorimetry/pressure characteristics of the THPP on PMD(Pyrotechnic Mechanical Device). Also, THPP composite ratio is designed by CEA program.

DELTA-FORMULATION OF A SEGREGATED NAVIER-STOKES SOLVER WITH A DUAL-TIME INTEGRATION (이중시간적분법을 이용한 순차적 유동해석 기법)

  • Kim, J.;Tack, N.I.;Kim, S.B.;Kim, M.H.;Lee, W.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.31-35
    • /
    • 2006
  • The delta-formulation of the Navier-Stokes equations has been popularly used in the aerodynamics area. Implicit algorithm can be easily implemented in that by using Taylor series expansion. This formulation is extended for an unsteady analysis by using a dual-time integration. In the meanwhile, the incompressible flows with heat transfers which occur in the area of thermo-hydraulics have been solved by a segregated algorithm such as the SIMPLE method, where each equation is discretised by using an under-relaxed deferred correction method and solved sequentially. In this study, the dual-time delta formulation is implemented in the segregated Navier-Stokes solver which is based on the collocated cell-centerd scheme with un unstructured mesh FVM. The pressure correction equation is derived by the SIMPLE method. From this study, it was found that the Euler dual-time method in the delta formulation can be combined with the SIMPLE method.

  • PDF

NUMERICAL METHOD FOR EVALUATION OF HYDROGEN FLAME ACCELERATION IN A COMPARTMENT OF A NUCLEAR POWER PLANT (원자력발전소 격실에서의 수소화염 가속에 대한 수치해석 연구)

  • Kim, Jong-Tae;Kim, Sang-Baik;Kim, Hoo-Joong
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.67-75
    • /
    • 2010
  • Hydrogen safety is one of important issues for future public usage of hydrogen. When hydrogen is released in a compartment, the occurrence of detonation must be prohibited. In order to evaluate the possibility of DDT (Deflagration to Detonation Transition) in the compartment with the hydrogen release, sigma-lambda criteria which were developed from experimental data are commonly used. But they give a little conservative results because they do not consider the detailed geometrical effect of the compartment. This is the main reason of the need to mechanistic combustion model for evaluation of hydrogen flame propagation and acceleration. In this study, sigma-lambda criteria and combustion model were systematically applied to evaluate a possibility of DDT in a IRWST compartment of APR1400 nuclear power plant during a hypothetical accident. A combustion model in an open source CFD code OpenFOAM has been applied for analyses of hydrogen flame propagation. The model was validated by evaluating the flame acceleration tests conducted in FLAME facility. And it was applied to evaluate the characteristics of a hydrogen flame propagation in the IRWST compartment of APR1400.

1-D Two-phase Flow Investigation for External Reactor Vessel Cooling (원자로 용기 외벽냉각을 위한 1차원 이상유동 실험 및 해석)

  • Kim, Jae-Cheol;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Sin;Ha, Kwang-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.482-490
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests and the simple analysis were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The calculated circulation flow rate was similar to experimental ones within about ${\pm}$15% error bounds and depended on the form loss due to the inlet/outlet area.

Preliminary Experimental Study on the Two-phase Flow Characteristics in a Natural Circulation Loop (자연순환 루프에서 이상유동 특성에 관한 예비실험 연구)

  • Kim, Jae-Cheol;Ha, Kwang-Soon;Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.308-311
    • /
    • 2008
  • As a severe accident mitigation strategy in a nuclear power plant, ERVC(External Reactor Vessel Cooling) has been proposed. Under ERVC conditions, where a molten corium is relocated in a reactor vessel lower head, a natural circulation two-phase flow is driven in the annular gap between the reactor vessel wall and its insulation. This flow should be sufficient to remove the decay heat of the molten corium and maintain the integrity of the reactor vessel. Preliminary experimental study was performed to estimate the natural circulation two-phase flow. The experimental facility which is one dimensional, the half height, and the 1/238 channel area of APR1400, was prepared and the experiments were carried out to estimate the natural circulation two-phase flow with varying the parameters of the coolant inlet area, the heat rate, and the coolant inlet subcooling. In results, the periodic circulation flow was observed and the characteristics were varied from the experimental parameters. The frequency of the natural circulation flow rate increased as the wall heat flux increased.

  • PDF

Development of Ultrasonic Magnetostrictive Sensors System to Measure in Very High Temperatures (초고온 온도 측정을 위한 초음파 자왜 센서 시스템 개발)

  • 구길모;김상백;박치승;최종호;고덕영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.66-74
    • /
    • 2001
  • The temperature measurement of yen high temperature core melt is of importance in LAVA (Lower-plenum Arrested Vessel Attack) experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The delay time of ultrasonic wavelets due to high temperature is suggested. As a first stage, a molten material temperature was measured up to 2300℃. Also, the optimization design of the ultrasonic temperature sensor with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in the reference〔1〕and the efficiency of the developed system are certified by performing experiments. This sensor welded magnetostrictive element and tungsten element will be able to measure a temperature range of 3000℃ hereafter.

  • PDF

An Experimental Investigation of the Boiling Heat Transfer on the Vertical Square Surface (수직면에서의 비등 열전달에 대한 실험적 연구)

  • Kim, Jae-Kwang;Song, Jin-Ho;Kim, Sin;Kim, Sang-Baik;Kim, Hee-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1237-1244
    • /
    • 2001
  • An experimental study was carried out to identify the various regimes of natural convective pool boiling and to determine the boiling heat transfer curve and Critical Heat Flux(CHF) on a vertical square surface having a 70mm width and a 70mm height. The heater made of copper block with embedded cartridge heaters is submerged in a water tank at atmospheric pressure. As the heat flux increases from 100kW/㎡ to 1.2MW/㎡, the heat transfer regime migrates from the nucleate boiling to the film boiling. The boiling heat transfer data are fitted by Rohsenow type correlation. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux, is visualized using a high speed digital imaging system.

An Experimental Study on the CCFL in Narrow Annular Gaps with Large Diameter (곡률 반경이 큰 환상관 간극에서 CCFL에 대한 실험 연구)

  • Lee, Seung-Jin;Jeong, Ji-Hwan;Park, Rae-Joon;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.795-800
    • /
    • 2000
  • A CCFL(Counter Current Flow Limit) test have been performed in narrow annular gaps with large diameter, because it has been confirmed that the CCFL phenomena affected the critical power in hemispherical narrow gap geometries from the SONATA(Simulation Of Naturally Arrested Thermal Attack)-IV (In-Vessel)/VISU(Visualization)-II experiments. The objectives of the CCFL experiments are to investigate the small gap sizes(1, 2mm) effect on CCFL under the large diameter condition and to confirm the findings of the VISU-II study that global dryout in hemispherical narrow gaps was induced by the CCFL. The test section was made of acrylic resin to allow visual observation on the two-phase flow behaviors inside annular gaps. It was observed from visualization that a part of water supplied was accumulated in the upper plenum and a significant increase in the differential pressure across the gap was occurred, which was the definition of the CCFL occurrence in this experimental study. From the experimental results in annular gap with large diameter it can be known that an increase in the differential pressure was not big at small air flow-rates. When the CCFL was occurred, the differential pressure across gaps was increased significantly and a water accumulated in the upper plenum. The occurrence of CCFL was correlated using the Wallis parameter.

  • PDF