• Title/Summary/Keyword: 긴장력 모니터링

Search Result 15, Processing Time 0.024 seconds

Experimental study of Hydraulic Cable Connection Systems with Re-tensioning and Wireless Monitoring (재긴장과 무선 모니터링이 가능한 유압식 케이블 접합부시스템의 실험에 대한 연구)

  • Kim, Min-Su;Lee, Ki-Hak;Kim, Seong-Beom;Lee, Sung-Min;Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2011
  • Due to the self-equilibrium status of the cable system, the loss of the tensioning in the cable system results in other cables carrying larger tension forces than those initially calculated by structural engineers. Also, turn-buckle systems, which have been widely used to pre-tension and/or re-tension the cables, are limited to use for small cables and to provide a rough estimation for tension forces. In this study, the re-tensioning cable connection systems were developed to overcome the problems mentioned above. The main objective of the proposed system is to re-tension large cables and measure the exact amount of tension forces of the cable systems. This connection system is also combined with the wireless signal monitoring module so that engineers are able to measure the tension forces any place where the internet is available. This paper presents the development of the re-tensioning cable connection systems and experiment using the real-scale cable systems to verify the fe-tensioning and signal monitoring systems.

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

Prediction of Long-term Behavior of Ground Anchor Based on the Field Monitoring Load Data Analysis (현장 하중계 계측자료 분석을 통한 그라운드 앵커의 장기거동 예측)

  • Park, Seong-yeol;Hwang, Bumsik;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.25-35
    • /
    • 2021
  • Recently, the ground anchor method is commonly applied with nail and rock bolt to secure the stability of slopes and structures in Korea. Among them, permanent anchor which is used for long-term stability should secure bearing capacity and durability during the period of use. However, according to recent studies, phenomenon such as deformation to slope and the reduction of residual tensile load over time have been reported along the long-term behavior of the anchors. These problems of reducing residual tensile load are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs. In this study, we identified the factors that affect the tensile load of permanent anchor from a literature study on the domestic and foreign, and investigated the prior studies that analyzed previously conducted load cell monitoring data. Afterwards, using this as basic data, the load cell measurement data collected at the actual site were analyzed to identify the tensile load reduction status of anchors, and the long-term load reduction characteristics were analyzed. Finally, by aggregating the preceding results, proposed a technique to predict the long-term load reduction characteristics of permanent anchors through short-term data to around 100 days after installation.

Study on the Dynamic Characteristics of a Containment using Ambient Vibration Data (상시진동을 이용한 격납건물의 동적특성에 관한 연구)

  • Park, Soo-Yong;Choi, Sang-Hyun;Hyun, Chang-Hun;Kim, Moon-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.696-699
    • /
    • 2010
  • 원자력 발전소의 격납건물은 인위적 또는 자연적 재해로부터 방사능의 외부누출을 방지함으로써 공중을 보호하는 역할을 하기 때문에 지속적인 건전성 확인을 통해 안전을 확보하는 것이 필수적이다. 격납건물의 구조적 건전성 확인은 통상 주기적으로 콘크리트에 대한 비파괴강도, 균열 및 중성화, 프리스트레스 텐던의 유효 긴장력 등의 측정을 통해 수행되고 있으나, 이러한 검사는 국부적인 건전도 정보만을 제공할 뿐 격납건물과 같은 대형 구조물 전체의 건전성에 대한 신뢰성 있는 평가 결과를 얻는데 많은 시간과 경비가 소요된다는 단점이 있다. 이러한 단점은 최근 구조물 전체의 상태를 평가하는 방법으로 주목받고 있는 구조건전성모니터링(Structural Health Monitoring, SHM)기법을 이용하여 극복할 수 있다. 본 논문에서는 실제 운전 중인 격납건물을 대상으로 상시진동 측정을 수행하였으며, SHM 기법의 기초자료로 활용될 수 있는 동적특성, 즉 격납건물의 고유진동수와 모드형상을 제시하였다.

  • PDF

Tension Force Monitoring of Tension Type Ground Anchor Using Optical FBG Sensors (광섬유 센서를 이용한 인장형 그라운드 앵커의 장력측정)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.17-26
    • /
    • 2011
  • Ground anchor method is one of the most popular reinforcing technology in Korea. For the sound monitoring of slope reinforced by permanent anchor for a long period, monitoring the tension force of ground anchor is very important. However, special technology except conventional load cell has not been developed for this purpose. In this paper, a new method is described to replace the conventional strain gauge and V.W. type load cell which has been commonly used as a prestress force monitoring tool for a short-term and long-term. Four 11.5 m long strain detectable tension type anchors were made using FBG sensor embedded tendon since FBG sensor is smaller than strain gauge type load cell and does not have noise from electromagnetic wave. Each two set strain detectable tension type anchors were installed into the different ground conditions, i.e., soft rock and weathered granite soil. Prestress force of ground anchor was monitored during the loading-unloading step from in-situ pullout test using proposed FBG sensor embedded in the tendon and the conventional load cell Test results show that the prestress force monitored from FBG sensor may well be used practically, for it almost matches with that measured from expensive load cell.