• 제목/요약/키워드: 기후예측모델

검색결과 511건 처리시간 0.034초

결합확률모델 및 기상변량을 이용한 예측강수의 편의보정 기법 (Joint Probability Approach to Bias Correction on Rainfall Forecasting Using Climate State Variables)

  • 정민규;김태정;황규남;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.309-309
    • /
    • 2019
  • 기후예측모델을 통해 일단위 강수의 예측정보가 제공되고 있지만, 실제 강수량자료와 시공간적 편의로 인해 수문학적 활용은 한계가 있다. 일반적으로 기후모델의 시공간적 해석 규모 및 예측정확성을 고려할 때 계절단위에서 예측정보의 활용이 가장 현실적인 것으로 알려지고 있다. 그러나 수문해석 시 시공간적 해상도가 낮아 직접적인 활용은 어려운 상황이며, 수문해석 모형의 입력자료로 활용 시 편의보정 및 상세화 과정이 일반적으로 요구된다. 본 연구에서는 기후모델로부터 얻은 강우예측결과에 Bayesian 모델 기반의 편의보정-상세화 기법을 개발하여 강우예측정보의 활용성을 개선하고자 한다. 이 과정에서 Bayesian Copula 모델을 이용한 이변량 형태의 예측강수의 검보정 방법을 개발하였으며, 특히 기후모델 이외의 기상 상태변량인 해수면온도(sea surface temperature, SST)를 예측인자로 추가하여 Hybrid 형태의 계절 앙상블 강우예측모델을 개발하고자 한다.

  • PDF

근지표면 온도 예측성이 계절적 예보에 미치는 영향: 미국 가뭄의 사례연구 (Role of the prediction skill of near-surface temperature in seasonal forecasting: A case study of U.S. droughts)

  • 감종훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.73-73
    • /
    • 2021
  • 가뭄의 계절적 예측성을 개선하기 위해서는 대기-지면-해양의 상호 작용이 현실적으로 모의할 수 있는 지구 기후 예보 모델의 개선이 필수적이다. 제한적인 기후 예보 모델의 예측성으로 인하여 다중 기후 모델들의 다중 앙상블 계절 예보 시스템이 제안되었다. 2008년에 제안된 북미 다중 모델 다중 앙상블 시스템(North American Multimodel Multiensemble System; NMME)은 다양한 모델 개발팀의 참여로 현재까지 운영되면서 계절적 예측성 연구에 큰 이바지를 하였다. 본 연구에서는 NMME 프로젝트에 참여하는 기후 예보 모델들의 북방 여름철 근지표면 온도과 강우량의 예측성을 진단하고 이들의 상관 관계의 강도를 관측데이터와 비교 분석하였다. 대부분의 NMME 모델들에서는 관측데이터에서 보다 강한 음의 상관 관계를 보였다. 이런 근지표면 온도와 강우량의 강한 상관 관계로 우수한 근지 표면 온도 예보는 각각의 해마다 그 역할이 다른 것을 발견되었다. 예를 들어 가문 여름에는 우수한 근지표면 온도 예보가 강우량 예보에 도움이 되고 강우량이 많은 여름에는 우수한 근지표면 온도 예보는 오히려 강우량 예측성을 제한하게 된다. 따라서 기존의 기후 예보 모델들에서 근지표면 온도와 강우량의 상관관계를 사실적으로 나타낼 수 있도록 모델 개선이 요구된다. 마지막으로 관측데이터와 기후 모델데이터에서 태평양과 대서양의 해수면 온도와 미국의 북방 여름철 날씨의 관계를 비교하였다. 근지표면 온도과 강우량에 대한 제한적 예측성에 비해, 대부분의 NMME 기후 예보 모델들에서 해수면 온도의 예측기술은 우수함을 발견하였고 몇몇 모델들에서는 미국의 북방 여름철 기후에 영향력을 주는 대서양과 태평양의 지역까지 잘 모사하는 것을 발견하였다. 따라서 본 연구는 보다 우수한 기후 예보 기술을 위해 앙상블 평균 예보값만이 아닌 NMME의 계절적 예보를 선택적인 사용이 필요함을 제안하였고 앞으로 북미 대륙 뿐만이 아니라 유럽-아시아의 계절적 이상 기후 예측성에 대한 연구 필요성을 강조하였다.

  • PDF

기후 예보 모델의 동북아시아 봄철 가뭄 예측성 연구 (Assessment of Seasonal Forecast Skill of Springtime Droughts over Northeast Asia in Climate Forecast Models)

  • 감종훈;김병희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.42-42
    • /
    • 2023
  • 최근 IPCC 6차 보고서에서는 전 지구의 온도가 0.5℃가 증가할 때마다 기상학적 가뭄 지역이 증가하며, 인위적 강제력은 가뭄 현상의 강도와 빈도를 증가하는 것으로 밝혔다. 봄철(3월-5월) 동남아시아(남중국, 필리핀 등)에 비해 상대적으로 건조한 동북아시아(동중국, 한반도, 일본) 지역은 가뭄에 취약하며 기후 변화에 따라 가뭄으로 인한 피해가 커질 것으로 전망된다. 그러므로 이 지역은 봄철 가뭄으로 인한 피해를 완화하기 위해 봄철 강수량에 대한 신뢰할 만한 계절적 예보 기술이 꼭 필요하다. 본 연구에서는 1992-2022년 봄철의 Standardized Precipitation Index(SPI) 값을 기준으로 2001년과 2011년 동북아시아 가뭄이 발생한 것을 확인하였으며, 각 해의 3월에 관측된 기상학적 초기 조건으로부터 다중 기후 예보 모델들의 봄철 강수량의 계절적 예측성을 정량적으로 평가하였다. 관측자료로부터 2001년 가뭄은 동북아시아 대기 상층의 저기압성 순환의 강화로 인한 제트류(Jet stream)의 강화와 연관되어 있었으며, 2011년 가뭄은 제트류 강화와 함께 태평양 열대 지역 기류 강화가 동반되어 발생하였음을 알 수 있었다. North American Multi-Model Ensemble 기후 예보 모델들은 2011년 가뭄에 비해 2001년 가뭄에 대한 예측성이 높았으며, 그 이유로는 대기 상층 순환의 예측성과 연관이 있음을 밝혔다. 또한, 봄철 대기-해양 상호 패턴을 관측과 유사하게 재현한 GFDL-SPEARS 모델이 가뭄 해의 대기 상층 저기압성 순환과 강수 예측성이 가장 높은 것을 보였다. 본 연구의 결과들을 통해 동북아시아 봄철 가뭄과 같은 극한 기상의 강수량 예측성 향상에 있어서 기후 예보 모델들의 현실적인 대기-해양 결합 과정 모사 능력의 중요성을 밝혔다. 본 연구에서 제안된 방안들은 기후 예측 모델 개선을 위한 전략적인 정보를 제공할 것으로 보인다.

  • PDF

주단위 지하수위 예측 모의를 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로 (Assessing the Utility of Rainfall Forecasts for Weekly Groundwater Level Forecast in Tampa Bay Region, Florida)

  • 황세운;아세파 터루소;장승우
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.1-9
    • /
    • 2013
  • 미래 기후 정보를 이용한 수문 환경의 단기 미래 예측은 안정적 수자원 공급을 위한 필수적 과제이다. 미국 플로리다 주 중서부 템파지역에서는 주요 수자원 중 하나인 지하수의 효과적 활용을 위해 지하수위 인공신경망 모델 (GWANN)을 개발하여 피압 대수층과 비피압 대수층에 대한 주 단위 평균 지하수위를 월별로 예측하고 그 결과를 수자원 공급 의사 결정에 반영하고 있다. 본 논문은 템파지역에 대한 GWANN 모델을 이용한 지하수위 예측 시스템을 소개하고 모델의 기후 입력 자료의 민감도를 분석함으로써 양질의 기후 정보에 대한 현 시스템의 활용성을 검토하였다. 2006년과 2007년에 대한 연구 결과, 관측 자료를 최적 예측 시나리오 (the best forecast)로 가정하여 적용한 결과는 지하수위 관측 지점에 따라 큰 차이를 보였지만 일반적으로 현 시스템 (현 시점의 실시간 주 단위 평균 강우량을 향후 4주간 동일하게 적용함) 에 비해 예측 성능이 개선되는 것으로 나타났다. 더불어 강우 관측 자료의 백분위 (percentile forecast; 20분위, 50분위, 80분위)를 강우 예측 자료로 활용한 경우에도 현 시스템과 비교하여 일부 나은 결과를 보여주었다. 그러나 지하수위 예측 모델을 활용하지 않고 현 시점의 지하 수위가 지속된다고 가정하는 경우 (na$\ddot{i}$ve model) 향후 2주간의 예측 결과가 best forecast 경우에 비해 높은 정확도를 보이는 등, GWANN 모델의 단기 예측에 대한 양질의 강우 예측 정보의 활용성은 낮으며, 향후 3주 이상에 대한 예측 성능에 있어 best forecast결과가 na$\ddot{i}$ve model 결과에 비해 높은 정확도를 보이기 시작하는 것으로 나타났다. 또한 GWANN 모델의 예측 성능은 적용 기간과 지역 및 지하대수층의 특성에 따라 큰 다양성을 가지는 단점을 보여 강우 예측 자료 활용에 앞서 모델 개선의 필요성이 있다고 판단된다. 본 연구는 단기수자원 공급 계획 수립을 위하여 사용되는 지역 모델링 시스템에 대한 기후 예측정보의 활용성 평가를 위한 방법론으로 고려될 수 있을 것으로 기대된다.

기후 변화에 따른 오염부하량 변화를 예측하기 위한 유역모델 적용성 분석 (Predict of Pollutant Loading Amount Change to Climate Change Using Basin Model Adaptability)

  • 장유진;박종태;구영민;서동일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.269-273
    • /
    • 2016
  • 세계적으로 기후변화와 관련한 연구가 증가하고 있다. 국내에서도 기후변화에 따른 수문학적 변화에 대한 연구가 주를 이루어 진행되고 있지만 오염부하량 변화에 대한 연구는 미흡하다. 또한 모형을 이용한 기후변화 예측에 있어 SWAT 모형이 주를 이루어 연구가 진행되고 있다. 본 연구는 기후변화 시나리오인 RCP시나리오 중 RCP 4.5와 RCP 8.5의 자료를 이용하여 용담댐 유역을 대상으로 기후변화에 따른 오염부하량을 예측하기 위하여 GWLF, SWAT 및 SWMM 모형을 선정하여 분석하였다. SWAT, GWLF 및 SWMM에 대하여 적용성 평가를 수행하였다. 기후변화에 따른 미래의 오염부하량을 예측한 결과 모델의 특성 등에 따라 결과가 다르게 나타났다.

  • PDF

계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가 (Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions)

  • 정유란;이진영;김미애;손수진
    • 한국농림기상학회지
    • /
    • 제25권2호
    • /
    • pp.80-98
    • /
    • 2023
  • 본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.

상관관계 분석을 통한 소비예측 시 필요 요소 도출 및 LSTM을 이용한 소비예측 모델 (Correlation analysis is needed to predict consumption and consumption prediction model using LSTM)

  • 이기훈;김진아;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.539-541
    • /
    • 2019
  • 오프라인 소비자의 의사결정은 크게 라이프스타일, 동기, 개성, 학습 등 개인적인 영향요인과 문화, 기후, 가족 등 기타 상황적 요인을 포함하는 환경적 영향요인에 의해 결정된다. 이러한 요인들을 입력 값으로 하는 다양한 딥러닝 모델을 이용한 소비예측 연구들이 진행되고 있다. 딥러닝을 이용한 예측모델을 사용하기 위해서는 먼저 요인들이 의사를 결정하는데 있어 얼마나 상관관계가 있는지 파악하는 작업이 중요하다. 본 논문에서는 이를 위해 다양한 상관관계 분석모델을 이용해 소비 의사결정 요소 중 기후, 문화와 같은 상황적 요인과 소비와의 상관관계를 도출하고, 기후, 문화를 대변하는 미세먼지 데이터와, SNS 버즈량 데이터와 소비데이터를 학습하는 소비예측 LSTM모델을 제안하고자 한다.

RCP 4.5 기후 시나리오에 따른 소양호 수온 변화 장기 모의 (Long-term Simulation of Water Temperature in Soyanggang Reservoir in Response to RCP 4.5 Climate Scenario)

  • 윤여정;박형석;정세웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.265-265
    • /
    • 2019
  • 기후변화로 의한 기온의 상승은 가뭄, 홍수와 같은 재해를 일으킬 뿐만 아니라 깊은 호수나 저수지와 같은 수자원에도 용존 산소, 물질, 영양소 및 식물플랑크톤의 수직적 분포 등과 같은 다양한 부분에 영향을 미친다. 본 연구의 목적은 SWAT, HEC-ResSim 및 CE-QUAL-W2(이하 W2)모델을 사용하여 미래의 기후 변화에 따른 소양호의 수온, 성층강도 및 열적 안정성의 변화를 장기 예측하고 그 영향을 평가하는데 있다. W2 모델의 보정은 2005 년부터 2015 년까지의 실측 과거 데이터를 이용하여 보정하였고 기후변화 시나리오는 IPCC의 AR5 RCP 4.5 시나리오를 사용하였다. 기후자료는 GCM 모델인 HadGEM2-AO 결과를 상세화하여 모의기간의 자료를 생성하였다. SWAT모델을 이용하여 모의기간인 2016 년부터 2070 년까지 일단위로 저수지 유입을 예측했으며 HEC-ResSim모델을 이용하여 소양강댐 저수지 운영 조건에 따라 저수지 방류량 및 수위 변화를 모의하였다. 수온 해석을 위해 W2를 적용하여 저수지의 장기간의 수온 변화를 예측하였다. 결과적으로 대기 온도는 $0.0279^{\circ}C/year$(p < 0.05) 상승할 것으로 예측되었으며, 동일기간 상층(수면으로부터 5m 깊이)과 하층 (바닥으로부터 5m 높이) 수온은 각각 $0.0191^{\circ}C$/년(p < 0.05) 및 $0.008^{\circ}C$/년(p < 0.05) 상승할 것으로 예측되었다. 모의된 수온을 계절별로 분석했을 때 상층수온은 여름철 가장 큰 폭으로 상승하였으며 하층의 경우 겨울철에 가장 큰 폭으로 상승하였다. 계절별 상-하층 수온의 차는 여름이 가장 컸으며, 겨울에 온도차가 가장 작았다. 또한 미래 온도의 상승에 따라, 소양호의 성층 강도가 강해지는 경향을 보였으며 상층 및 하층의 온도차 $5^{\circ}C$를 기준으로 성층이 형성되는 기간은 큰 변동이 없었으나 소멸되는 시점이 점점 늦어지는 추세를 보여 성층 형성 기간이 길어지는 것으로 나타났다. 저수지 표면의 수온 상승은 식물플랑크톤의 계절 성장률에 영향을 미쳤는데, 특정 조건에서 규조류는 최적 성장 범위를 벗어나는 고온 조건에서 성장속도가 감소하였으나 녹조류와 남조류의 출현 시기가 빨라지며 장기화될 것으로 예측되었다.

  • PDF

섬진강 댐의 수문학적 예측을 위한 딥러닝 모델 활용 (Utility of Deep Learning Model for Improving Dam and Reservoir Operation: A Case Study of Seonjin River Dam)

  • 이은미;감종훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.483-483
    • /
    • 2022
  • 댐과 저수지의 운영 최적화를 위한 수문학적 예보는 현재 수동적인 댐 운영이 주를 이루면서 활용도가 높지 않다. 불확실한 기후변화나 기후재난 상황에서 우리 사회에 악영향을 최소화하기 위해 선제적으로 대응/대비할 수 있는 댐 운영 방안이 불가피하다. 강우량 예측 기술은 기후변화로 인해 제한적인 상황이다. 실례로, 2020년 8월에 섬진강의 댐이 극심한 집중 강우로 인해 무너지는 사태가 발생하였고 이로 인해 지역사회에 막대한 경제적 피해가 발생하였다. 선제적 댐 방류량 운영 기술은 또한 환경적인 변화로 인한 영향을 완화하기 위해 필요한 것이다. 제한적인 기상 예보 기술을 극복하고자 심화학습이나 강화학습 같은 인공지능 모델들의 활용성에 대한 연구가 시도되고 있다. 따라서 본 연구는 섬진강 댐의 시간당 수문 데이터를 이용하여 댐 운영을 위한 심화학습 모델을 개발하고 그 활용도를 평가하였다. 댐 운영을 위한 심화학습 모델로서 시계열 데이터 예측에 적합한 Long Sort Term Memory(LSTM)과 Gated Recurrent Unit(GRU) 알고리즘을 구축하고 댐 수위를 예측하였다. 분석 자료는 WAMIS에서 제공하는 2000년부터 2021년까지의 시간당 데이터를 사용하였다. 입력 데이터로서 시간당 유입량, 강우량과 방류량을, 출력 데이터로서 시간당 수위 자료를 각각 사용하였으며. 결정계수(R2 Score)를 통해 모델의 예측 성능을 평가하였다. 댐 수위 예측값 개선을 위해 하이퍼파라미터의 '최적값'이 존재하는 범위를 줄여나가는 하이퍼파라미터 최적화를 두 가지 방법으로 진행하였다. 첫 번째 방법은 수동적 탐색(Manual Search) 방법으로 Sequence Length를 24, 48, 72시간, Hidden Layer를 1, 3, 5개로 설정하여 하이퍼파라미터의 조합에 따른 LSTM와 GRU의 민감도를 평가하였다. 두 번째 방법은 Grid Search로 최적의 하이퍼파라미터를 찾았다. 이 두가지 방법에서는 같은 하이퍼파라미터 안에서 GRU가 LSTM에 비해 더 높은 예측 정확도를 보였고 Sequence Length가 높을수록 정확도가 높아지는 경향을 보였다. Manual Search 방법의 경우 R2가 최대 0.72의 정확도를 보였고 Grid Search 방법의 경우 R2가 0.79의 정확도를 보였다. 본 연구 결과는 가뭄과 홍수와 같은 물 재해에 사전 대응하고 기후변화에 적응할 수 있는 댐 운영 개선에 도움을 줄 수 있을 것으로 판단된다.

  • PDF

낙동강 수질 예측을 위한 프로세스 모델링 자료를 이용한 메타모델 개발 (Development of Meta-Model Using Process Model Data for Predicting the Water Quality of Nakdong River)

  • 유명수;송영일;서동일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.91-91
    • /
    • 2020
  • IPCC (Intergovernmental Panel on Climate Change) 5차 평가보고서에 의하면 최근 배출 온실가스의 양은 관측 이래 최고 수준이며 온실가스로 인한 기후변화는 인간계와 자연계에 광범위한 영향을 주고 있다고 보고하였다. 기후변화의 영향은 국제적으로 빙하 감소, 사막화, 해수면 상승 등 뚜렷하게 나타나고 있다. 이러한 기후변화에 대응하기 위해 온실가스 완화 정책과 동시에 새로운 기후변화 환경에 적응하는 것이 필요하다. 기후변화 적응이란 현재 나타나고 있거나 미래에 나타날 것으로 예상되는 기후변화의 파급효과와 영향에 대응할 수 있도록 하는 모든 행동이며 이를 위해서는 기후변화 영향분석이 수반되어야 한다. MOTIVE 연구단에서는 기후변화 적응대책 수립의 지원을 목표로 7개 부문(건강, 물관리, 농업, 산림, 생태, 해양, 수산)에서 "한국형 통합평가 모형"을 개발하고 있다. 각 부문에서 개발하는 프로세스 모델은 시스템에 대한 지식을 가진 상황에서 사용하면 신뢰할 수 있는 예측 결과를 얻을 수 있지만, 부문별 통합을 통한 영향 분석 시 타 분야에 대한 지식이 수반되어야 하는 어려움을 가진다. 이를 위해 본 연구에서는 시스템 내의 물리적 프로세스에 대한 요구 없이 입출력 데이터만을 이용하여 결과를 신속하게 추정하는 데이터 모델링(기계학습)을 이용하였다. 데이터 모델링을 위한 데이터는 다양한 자연 현상에 대한 BANPOL(수질 프로세스 모델) 분석을 통한 자료를 이용하여 학습 자료를 구축하였다. 즉, 데이터 모델링은 BANPOL 모델을 대리하는 메타모델이며, 낙동강 표준유역에 대한 유량 및 수질을 높은 상관성으로 추정하였다. 원 모델보다 정확도는 낮을 수 있으나 메타모델의 개발을 통한 웹 시스템을 개발하여 비전문가의 구동 및 신속한 기후 시나리오를 적용할 수 있는 환경을 개발하였다.

  • PDF