• Title/Summary/Keyword: 기하 알고리즘

Search Result 6,203, Processing Time 0.031 seconds

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

CT-Derived Deep Learning-Based Quantification of Body Composition Associated with Disease Severity in Chronic Obstructive Pulmonary Disease (CT 기반 딥러닝을 이용한 만성 폐쇄성 폐질환의 체성분 정량화와 질병 중증도)

  • Jae Eun Song;So Hyeon Bak;Myoung-Nam Lim;Eun Ju Lee;Yoon Ki Cha;Hyun Jung Yoon;Woo Jin Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1123-1133
    • /
    • 2023
  • Purpose Our study aimed to evaluate the association between automated quantified body composition on CT and pulmonary function or quantitative lung features in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods A total of 290 patients with COPD were enrolled in this study. The volume of muscle and subcutaneous fat, area of muscle and subcutaneous fat at T12, and bone attenuation at T12 were obtained from chest CT using a deep learning-based body segmentation algorithm. Parametric response mapping-derived emphysema (PRMemph), PRM-derived functional small airway disease (PRMfSAD), and airway wall thickness (AWT)-Pi10 were quantitatively assessed. The association between body composition and outcomes was evaluated using Pearson's correlation analysis. Results The volume and area of muscle and subcutaneous fat were negatively associated with PRMemph and PRMfSAD (p < 0.05). Bone density at T12 was negatively associated with PRMemph (r = -0.1828, p = 0.002). The volume and area of subcutaneous fat and bone density at T12 were positively correlated with AWT-Pi10 (r = 0.1287, p = 0.030; r = 0.1668, p = 0.005; r = 0.1279, p = 0.031). However, muscle volume was negatively correlated with the AWT-Pi10 (r = -0.1966, p = 0.001). Muscle volume was significantly associated with pulmonary function (p < 0.001). Conclusion Body composition, automatically assessed using chest CT, is associated with the phenotype and severity of COPD.

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF