• Title/Summary/Keyword: 기하 모델링

Search Result 3,008, Processing Time 0.029 seconds

A Study on Topographic Effects in 2D Resistivity Survey by Numerical and Physical Scale Modeling (수치 및 축소모형실험에 의한 2차원 전기비저항 탐사에서의 지형효과에 관한 연구)

  • Kim Gun-Soo;Cho In-Ky;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • Recently, resistivity surveys have been frequently carried out over the irregular terrain such as mountainous area. Such an irregular terrain itself can produce significant anomalies which may lead to misinterpretations. In this study, topographic effects in resistivity survey were studied using the physical scale modeling as well as the numerical one adopting finite element method. The scale modeling was conducted at a pond, so that we could avoid the edge effect, the inherent problem of the scale modeling conducted in a water tank in laboratory. The modeling experiments for two topographic features, a ridge and a valley with various slope angles, confirmed that the results by the two different modeling techniques coincide with each other fairly well for all the terrain models. These experiments adopting dipole-dipole array showed the distinctive terrain effects, such that a ridge produces a high apparent resistivity anomaly at the ridge center flanked by zones of lower apparent resistivity. On the other hand, a valley produces the opposite anomaly pattern, a central low flanked by highs. As the slope of a terrain model becomes steeper, the terrain-induced anomalies become stronger, and moreover, apparent resistivity can become even negative for the model with extremely high slope angle. All the modeling results led us to the conclusion that terrain effects should be included in the numerical modeling and/or the inversion process to interpret data acquired at the rugged terrain area.

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

A Study on the Development of BIM Property Classification System in Road and River Field (도로 및 하천분야 BIM 속성분류체계 개발방안 연구)

  • Nam, Jeong-Yong;Kim, Min-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.773-784
    • /
    • 2019
  • With the recent development of 4th industrial revolution technology, BIM information systems are spreading to civil engineering fields as a link to this technology. Accordingly, the Land, Infrastructure and Transport Ministry is announcing a technical policy to introduce the BIM information system into the construction sector from 2020. Usually, SOC-related facilities are complex, making it difficult to implement BIM without a standards framework. To overcome these problems, it is urgent to develop a BIM standard classification system. In this study, the BIM property classification system was developed to link the previously developed object classification system by analyzing domestic and foreign prior studies and working standards. This includes property information of businesses, facilities, parts of facilities and components that correspond to the level of object composition in the road and river sectors. It also suggested ways to apply expansion to various SOC areas and to organize spatial information by facility. The results of this study were applied to road facilities to verify the possibility of information building. The development of the BIM Standards Classification System through this R&D will contribute to the development of construction IT by providing conditions for convenient modeling and information system.

Optimal Operation Methods of the Seasonal Solar Borehole Thermal Energy Storage System for Heating of a Greenhouse (온실난방을 위한 태양열 지중 계간축열시스템의 최적 운전 방안)

  • Kim, Wonuk;Kim, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.28-34
    • /
    • 2019
  • Solar energy is one of the most abundant renewable energy sources on Earth but there are restrictions on the use of solar thermal energy due to the time-discrepancy between the solar-rich season and heating demand. In Europe and Canada, a seasonal solar thermal energy storage (SSTES), which stores the abundant solar heat in the summer and uses the heat for the winter heating load, is used. Recently, SSTES has been introduced in Korea and empirical studies are actively underway. In this study, a $2,000m^2$ flat plate type solar collector and $20,000m^2$ of borehole thermal energy storage (BTES) were studied for a greenhouse in Hwaseong City, which has a heating load of 2,164 GJ/year. To predict the dynamic performance of the system over time, it was simulated using the TRNSYS 18 program, and the solar fraction of the system with the control conditions was investigated. As a result, the solar BTES system proposed in this study showed an average solar fraction of approximately 60% for 5 years when differential temperature control was applied to both collecting solar thermal energy and discharging BTES. The proposed system simplified the configuration and control method of the solar BTES system and secured its performance.

Detecting Surface Changes Triggered by Recent Volcanic Activities at Kīlauea, Hawai'i, by using the SAR Interferometric Technique: Preliminary Report (SAR 간섭기법을 활용한 하와이 킬라우에아 화산의 2018 분화 활동 관측)

  • Jo, MinJeong;Osmanoglu, Batuhan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1545-1553
    • /
    • 2018
  • Recent eruptive activity at Kīlauea Volcano started on at the end of April in 2018 showed rapid ground deflation between May and June in 2018. On summit area Halema'uma'u lava lake continued to drop at high speed and Kīlauea's summit continued to deflate. GPS receivers and electronic tiltmeters detected the surface deformation greater than 2 meters. We explored the time-series surface deformation at Kīlauea Volcano, focusing on the early stage of eruptive activity, using multi-temporal COSMO-SkyMed SAR imagery. The observed maximum deformation in line-of-sight (LOS) direction was about -1.5 meter, and it indicates approximately -1.9 meter in subsiding direction by applying incidence angle. The results showed that summit began to deflate just after the event started and most of deformation occurred between early May and the end of June. Moreover, we confirmed that summit's deflation rarely happened since July 2018, which means volcanic activity entered a stable stage. The best-fit magma source model based on time-series surface deformation demonstrated that magma chambers were lying at depths between 2-3 km, and it showed a deepening trend in time. Along with the change of source depth, the center of each magma model moved toward the southwest according to the time. These results have a potential risk of including bias coming from single track observation. Therefore, to complement the initial results, we need to generate precise magma source model based on three-dimensional measurements in further research.

Design and Application of Database System for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드의 동적밸런싱 시험에 대한 데이터베이스 설계 및 적용)

  • Yoon, Byung-Il;Paek, Seung-Kil;Song, Keun-Woong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.582-589
    • /
    • 2019
  • The dynamic balancing test of helicopter main rotor blades is a blade rotation test conducted on the ground to make the track of each blade and the load on each pitch rod to a similar level before the flight tests. The purpose of the test is to reduce the vibration occurring on main rotor system as a result of dissimilarity of each blade. The RTB test has been performed for a long period at Whirl Tower Test Facility located in Goheung Flight Centre, accumulating its data. As the amount of the results has become increasingly enormous the needs for the development of database system has been raised to manage the data with effective method. This research aimed to describe the development of Dynamic-Balancing Database System for the RTB test results. For the design of the database system the informations of RTB test results have been categorized into properties, connecting each others according to its logical meaning, and comprised into a database system with relational elements. It has been shown in this paper that the Dynamic Balancing database system enables to effectively accumulate the RTB test data and to be utilized for the data analysis.

Evaluation of Optimum Spacing between Anchor Bodies of Distributive Compression Anchor Using Numerical Simulation (수치해석을 이용한 압축 분산형 앵커의 내하체 최적 간격 산정)

  • Gu, Kyo-Young;Shin, Gyu-Bum;Chung, Choong-Ki;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.29-39
    • /
    • 2019
  • Load distributive compression anchors distribute the compressive stress in the grout and increase the pull-out capacity of the anchor by using multiple anchor bodies. In this anchor type, the spacing between the anchor bodies has a large influence on the stress in the grout. However, there are few researches about the spacing and there are no design standards. Therefore, the effect of the anchor body spacing on the grout stress was analyzed by performing finite element analyses. First, the applicability of the numerical modeling was verified by comparing with field test results of a compression anchor. Then, the parametric study was performed varying soil type, anchor body spacing, and load magnitude. The analysis results showed that the maximum compressive stress in the grout increased at the narrower spacing and the tensile stress developed at the wider spacing. Therefore, the optimum spacing was defined as the spacing, which prevents the superposition of compressive stresses and minimize the tensile stress. Finally, the optimum spacing was proposed according to the soil type and the load magnitude.

Mechanical Properties of Metallic Additive Manufactured Lattice Structures according to Relative Density (상대 밀도에 따른 금속 적층 제조 격자 구조체의 기계적 특성)

  • Park, Kwang-Min;Kim, Jung-Gil;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The lattice structure is attracting attention from industry because of its excellent strength and stiffness, ultra-lightweight, and energy absorption capability. Despite these advantages, widespread commercialization is limited by the difficult manufacturing processes for complex shapes. Additive manufacturing is attracting attention as an optimal technology for manufacturing lattice structures as a technology capable of fabricating complex geometric shapes. In this study, a unit cell was formed using a three-dimensional coordinate method. The relative density relational equation according to the boundary box size and strut radius of the unit cell was derived. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) with a controlled relative density were designed using modeling software. The accuracy of the equations for calculating the relative density proposed in this study secured 98.3%, 98.6%, and 96.2% reliability in SC, BCC, and FCC, respectively. A simulation of the lattice structure revealed an increase in compressive yield load with increasing relative density under the same cell arrangement condition. The compressive yield load decreased in the order of SC, BCC, and FCC under the same arrangement conditions. Finally, structural optimization for the compressive load of a 20 mm × 20 mm × 20 mm structure was possible by configuring the SC unit cells in a 3 × 3 × 3 array.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.