• Title/Summary/Keyword: 기하형상정보

Search Result 133, Processing Time 0.036 seconds

The Study for the Reconstruction of two objects using the Stereo X-ray Inspection System (스테레오 X-선 검색장치를 이용한 이중물체 형상복원 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Park, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4152-4158
    • /
    • 2012
  • The Stereo X-ray inspection system is designed for effectively providing the additional information of objects than the conventional inspection system that offers only 2D cross-section of objects. We studied the geometric improvement of the stereo X-ray inspection system, the stereo matching algorithm of the single object using the edge and the volume reconstruction method for the inspected object. In this paper, we conduct a matching algorithm to find the correspondences between the images and reconstruct 3-D shapes of real objects using the stereo X-ray images. Also, we apply a new 3D reconstruction algorithm for the discrimination of two objects. For the separation of the overlapping objects, we calculate the vector of the object and divide inner and outer voxel of objects. And for the elimination of the overlapping area, we study the reconstruct 3D shapes using the threshold based Z-axis. The experimental results show that the proposed technique can enhance the accuracy of stereo matching and give more efficient visualization for overlap objects in the restricted environment.

An Approximation Method for Configuration Optimization of Structures (구조물 형상최적화를 위한 근사해석법에 관한 연구)

  • Jang, Dong Jin;Hoon, Sang Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.7-17
    • /
    • 1990
  • The objective of this paper is to provide a method of optimizing are as of the members as well as shape of both truss and arch structures. The design process includes satisfaction of stress and Euler buckling stress constraints for truss and combined stress constraints for arch structures. In order to reduce the number of detailed finite element analysis, the Force Approximation Method is used. A finite element analysis of the initial structure is performed and the gradients of the member end forces are calculated with respect to the areas and nodal coordinates. The gradients are used to form an approximate structural analysis based on first order Taylor series expansions of the member end forces. Using move limits, a numerical optimizer minimizes the volume of the structure with information from the approximate structural analysis. Numerical examples are performed and compared with other methods to demonstrate the efficiency and reliability of the Force Approximation Method for shape optimization. It is shown that the number of finite element analysis is greatly reduced and that it leads to a highly efficient method of shape optimization of structures.

  • PDF

Development of a Diagnosis System far CAD Model Errors using OpenCASCADE (OpenCASCADE를 이용한 CAD 모델의 오류 진단 시스템의 개발)

  • Yang, Jeong-Sam;Han, Soon-Hung;Choi, Yong;Park, Sang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Automotive engineers involved in a new car project use various CAD systems that are chosen based on work requirements. For example, engineers in Hyundai Motors are using Pro/Designer and Alias fur the style design, but they use CATIA to design parts and assemblies, ANSYS for FEM analysis, and Pro/Engineer to design engines. Because they use different CAD systems, they have difficulties in collaborative design. Data, which contains errors, is transferred between CAD systems. It is difficult to find out such errors in a large CAD model. An evaluation method for CAD models has been developed in this study. This diagnosis tool analyses a STEP or an IGES file generated from a CAD system, and produces a quantitative error report. The tool has been tested with actual data sets. This paper proposes an algorithm that produces mathematical error values of entities of IGES models that have geometrical data, and entities of STEP models that have topological data, and inspects every part off model. To develop this system, we have used the OpenCASCADE kernel, which is an open source kernel developed by Matra Datavision of France.

자기헤드재료

  • 강일구;김희중
    • Electrical & Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.209-218
    • /
    • 1988
  • 현대는 정보화시대로 불릴 만큼 대량의 정보가 창출, 유통되고 있으며 그 정보양은 점차 기하급수적으로 증대되어 가고 있다. 이에 따라 정보의 저장 및 재현을 위한 자기기록기기의 수요도 급증하고 있으며 자기기록기술도 보다 고밀도화, 고신뢰화에 대응하는 방향으로 발전해 가고 있다. 기술적인 관점으로 본 경우에는 헤드재료, 형상구성, 자기회로 등에 관한 이론이 충분히 완성되지 않은 상태에서 이론적으로 축적된 노하우에 의존하는 경우가 많고 여러형태에 의한 모델의 제안이 된 정도에서 실용화가 앞서는 실정에 있다. 이와 같은 상황하에서 자기기록에 대한 염격한 요구는 그대로 헤드에 대한 요구가 되고 있고 헤드의 성능향상을 위해서는 우선 헤드를 구성하는 재료가 중요한 과제로 등장하고 있다. 본고에서는 자기헤드재료에 촛점을 맞추어 기술적으로 중요한 점에 관해 그 개요를 살펴보고자 한다.

  • PDF

A Data-Driven Approach to 3D Avatar Creation from Photos (이미지 입력을 이용한 3차원 아바타의 데이터기반 생성 기법)

  • ;Yeo, Youngin;Seo, Hye-Won;Wohn, Kwang-Yun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.682-684
    • /
    • 2005
  • 본 논문은 인체 스캔 데이터를 예제 데이터베이스로 사용하여 2차원 사진으로부터 3차원 아바타 모델을 생성하는 기술을 제안한다. 직접 기하학적인 변형을 통해 3차원 아바타를 생성하는 기존의 방법들과는 달리, 미리 스캔한 다수의 3차원 인체 형상 모델 데이터베이스를 사용하여 사진에 나타난 실루엣과 가장 일치하도록 기본 모델을 변형 및 계산함으로써 모델을 획득한다. 본 연구는 예제 기반의 모델 변형 방법이 가지는 사실적인 인체 모델 생성의 장점, 2차원 사진을 이용한 방법이 가지는 텍스쳐 매핑 및 실루엣 정보 반영의 장정을 모두 가진다. 변형된 모델은 텍스쳐 매핑을 가한 후 애니메이션을 적용하여 가상환경에 활용할 수 있다.

  • PDF

Recursive Error-Component Correcting Method for 3D Shape Reconstruction (3차원 형상 복원을 위한 재귀적 오차 성분 보정 방법)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1923-1928
    • /
    • 2017
  • This paper is a study on error correction for three-dimensional shape reconstruction based on factorization method. The existing error correction method based on factorization has a limitation of correction because it is optimized globally. Thus in this paper, we propose our new method which can find and correct the only major error influence factor toward three-dimensional reconstructed shape instead of global approach. We define the error-influenced factor in two-dimensional re-projection deviation space and directly control the error components. In addition, it is possible to improve the error correcting performance by recursively applying the above process. This approach has an advantage under noise because it controls the major error components without depending on any geometric information. The performance evaluation of the proposed algorithm is verified by simulation with synthetic and real image sequence to demonstrate noise robustness.

Automated Areal Feature Matching in Different Spatial Data-sets (이종의 공간 데이터 셋의 면 객체 자동 매칭 방법)

  • Kim, Ji Young;Lee, Jae Bin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2016
  • In this paper, we proposed an automated areal feature matching method based on geometric similarity without user intervention and is applied into areal features of many-to-many relation, for confusion of spatial data-sets of different scale and updating cycle. Firstly, areal feature(node) that a value of inclusion function is more than 0.4 was connected as an edge in adjacency matrix and candidate corresponding areal features included many-to-many relation was identified by multiplication of adjacency matrix. For geometrical matching, these multiple candidates corresponding areal features were transformed into an aggregated polygon as a convex hull generated by a curve-fitting algorithm. Secondly, we defined matching criteria to measure geometrical quality, and these criteria were changed into normalized values, similarity, by similarity function. Next, shape similarity is defined as a weighted linear combination of these similarities and weights which are calculated by Criteria Importance Through Intercriteria Correlation(CRITIC) method. Finally, in training data, we identified Equal Error Rate(EER) which is trade-off value in a plot of precision versus recall for all threshold values(PR curve) as a threshold and decided if these candidate pairs are corresponding pairs or not. To the result of applying the proposed method in a digital topographic map and a base map of address system(KAIS), we confirmed that some many-to-many areal features were mis-detected in visual evaluation and precision, recall and F-Measure was highly 0.951, 0.906, 0.928, respectively in statistical evaluation. These means that accuracy of the automated matching between different spatial data-sets by the proposed method is highly. However, we should do a research on an inclusion function and a detail matching criterion to exactly quantify many-to-many areal features in future.

Differential analysis of the surface model driven from lidar imagery (라이다영상으로부터 유도된 지표모델의 2차 차분분석)

  • Seo, Su-Young
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.298-302
    • /
    • 2010
  • This study proposes a differential method to analyze the properties of the topographic surface driven from lidar imagery. Although airborne lidar imagery provides elevation information rapidly, a sequence of extraction processes are needed to acquire semantic information about objects such as terrain, roads, trees, vegetation, and buildings. For the processes, the properties present in a given lidar data need to be analyzed. In order to investigate the geometric characteristics of the surface, this study employs eigenvalues of the Hessian matrix. For experiments, a lidar image containing university campus buildings with the point density of about 1 meter was processed and the results show that the approach is effective to obtain the properties of each land object Surface.

  • PDF

Airflow visualization and an interactive method for segmentation of 3D nasal airway (상호작용 기반 3차원 비강 모델 분할 및 가시화)

  • Seo, An-Na;Heo, Go-Eun;Kim, S.K.;Kim, Jee-In
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.320-322
    • /
    • 2012
  • 코 내부의 복잡한 기하학적 형상으로 인해 nasal airway의 분리는 많은 어려움을 겪고 있다. 본 논문은 velocimetry of nasal airflow 와 코 수술 계획을 위하여 3차원 공간에서 nasal airway를 interactive semiautomatic으로 분리하고 시각화하는 방법을 제안한다. 제안하는 방법은 ROI(Region-Of-Interest)와 multi-seed 3d region growing(MS3RG)기법을 적용하여 비강을 분리하며 볼륨렌더링 기법을 이용하여 분리된 영역을 3차원 공간에서 직관적으로 확인 할 수 있다. 또한 분리된 3차원 비강 모델은 유동흐름 실험을 위하여 3차원 프린터를 통해 실제 모형으로 제작 가능하다. 그리하여 CT dataset(512*512*175)을 가지고 매뉴얼 세그멘테이션에서 5시간 정도 걸리던 작업을 반자동 세그멘테이션 방법을 이용할 경우 최대 3분 이내에 분리 작업을 완료할 수 있으며 수치해석 실험 및 물리 실험에 이용할 수 있다.

Scaling up of single fracture using a spectral analysis and computation of its permeability coefficient (스펙트럼 분석을 응용한 단일 균열 규모확장과 투수계수 산정)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.29-46
    • /
    • 2004
  • It is important to identify geometries of fracture that act as a conduit of fluid flow for characterization of ground water flow in fractured rock. Fracture geometries control hydraulic conductivity and stream lines in a rock mass. However, we have difficulties to acquire whole geometric data of fractures in a field scale because of discontinuous distribution of outcrops and impossibility of continuous collecting of subsurface data. Therefore, it is needed to develop a method to describe whole feature of a target fracture geometry. This study suggests a new approach to develop a method to characterize on the whole feature of a target fracture geometry based on the Fourier transform. After sampling of specimens along a target fracture from borehole cores, effective frequencies among roughness components were selected by the Fourier transform on each specimen. Then, the selected effective frequencies were averaged on each frequency. Because the averaged spectrum includes all the frequency profiles of each specimen, it shows the representative components of the fracture roughness of the target fracture. The inverse Fourier transform is conducted to reconstruct an averaged whole roughness feature after low pass filtering. The reconstructed roughness feature also shows the representative roughness of the target subsurface fracture including the geometrical characteristics of each specimen. It also means that overall roughness feature by scaling up of a fracture. In order to identify the characteristics of permeability coefficients along the target fracture, fracture models were constructed based on the reconstructed roughness feature. The computation of permeability coefficient was performed by the homogenization analysis that can calculate accurate permeability coefficients with full consideration of fracture geometry. The results show a range between $10^{-4}{\;}and{\;}10^{-3}{\;}cm/sec$, indicating reasonable values of permeability coefficient along a large fracture. This approach will be effectively applied to the analysis of permeability characteristics along a large fracture as well as identification of the whole feature of a fracture in a field scale.