• Title/Summary/Keyword: 기하학적 형상

Search Result 655, Processing Time 0.032 seconds

A Study on the Geometry Change for the Increased Contact Wire Tension in the Pre-sagged Existing Catenary (사전 이도가 주어진 기설 전차선로에서 전차선 장력을 증가시켰을 때 전차선 기하학적 형상 변화 연구)

  • An, Seung-Hwa;Kim, Yoon-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.447-453
    • /
    • 2012
  • It is studied that the structure of the contact plane geometry of the contact wire would be changed when the contact wire tension is increased in the existing overhead contact lines for the purpose of improving the operation speed temporarily. In this paper, the dropper length formula which could be well applied to the pre-sagged catenary is reviewed first. Second, the changing amount of the pre-sag if the contact wire tension change from 20kN to 23kN or from 20kN to 25kN for the Gyeongbu HSL(high speed line) 49.5m catenary is evaluated by using of the self-written program in accordance with the dropper length formula. Moreover, the increasing tension and measuring the pre-sag change experiment in the Gyeongbu 2 HSL was conducted. The calculated data are compared with the measured data. As a result, it is found that the geometry change is very little and will not make the current collection performance deteriorated.

Geometric Thermoelectric Generator Leg Shape Design for Efficient Waste Heat Recovery (효율적인 폐열 회수를 위한 기하학적 열전소자 다리 설계)

  • Hyeon-Woo Kang;Jung-Hoe Kim;Young-Ki Cho;Won-Seok Choi;Hyun-Ji Lee;Hun-Kee Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.589-602
    • /
    • 2024
  • Thermoelectric generator (TEG) generally do not have high heat conversion efficiencies. The performance of a thermoelectric generator module depends on the shape of the legs as well as the properties of the material and the number of legs. In this study, the leg shapes of thermoelectric elements are modeled into various geometric structures such as cylinder and cube shaped to efficiently harvest waste heat, and the electrical characteristics are compared numerically. The temperature gradient and power generation according to the bridge shape are found to be highest at the existing Cube shape. As a result of comparing the power generation using the cooling effect, the Cone shape was the highest in natural convection and the Hourglass shape was highest in forced convection. Research results confirm that geometry can affect the efficiency of thermoelectric generators.

Study on the Design of High Speed Airfoil using the Geometric Interpolation and Optimization (기하학적 보간과 최적화를 이용한 고속 에어포일 형상 설계 연구)

  • Jung, Kyoung-Jin;Lee, Jae-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.273-284
    • /
    • 2012
  • In this paper, a study on the design of high speed airfoil is described. Various airfoils are investigated and existing airfoils are geometrically interpolated to generate new airfoils. An optimization method is applied to theses new airfoils and their aerodynamic performances are optimized. Through this study, it is demonstrated that the airfoil can be designed using the geometrical interpolation and the optimization method to exhibit good aerodynamic performances.

A Study on Hull Form Design Techniques Based on Graphical User Interface (그래픽 사용자 인터페이스(GUI)를 도입한 선형설계 기법에 관한 연구)

  • H. Shin;K.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.17-22
    • /
    • 1993
  • The intersection problem of three-dimensional free form surfaces can be solved by geometrical and numerical methods. Up to now, the subdivision technique, which is classified under the former, has been largely employed to find the cross section of ship hull form. In this paper, an algorithm is presented for intersecting ship hull form in high speed. The high speed calculation algorithm is based on simple numerical methods, such as the secant method, false position method and bisection method. The algorithm is directly applicable to depicting arbitrary ship cross sections, drawing ship lines and constructing the offset table.

  • PDF

음향학적 분석을 통한 소음기 설계에 관한 고찰

  • 김양한
    • Journal of the KSME
    • /
    • v.29 no.5
    • /
    • pp.496-506
    • /
    • 1989
  • 음향학적 관점에서 살펴본 특성은 소음기 내. 외부의 기하학적이 형상, 온도구배 및 유동에 의한 음파전달 현상의 천이등이 복합적으로 관련되어 있어 명쾌하고도 보편적인 설계 방법은 아직까지 밝혀져 있지 않은 상태에 있다. 따라서 많은 자동차 회사나 소음기의 제작 및 설계 회사에서 나 름대로 축적되어온 자료와 경험에 의하여 적절한 소음기를 설계하고 있으나 그 체계적 정리가 일반기계 공학자에게 널리 알려져 있지 않은 상태이다. 본 글에서는 현재까지 밝혀진 소음기의 성능과, 소음기의 내. 외부의 기하학적 형상 및 온도구배와 유동 등의 관련성을 바탕으로 하여 개념적인 설계 방법을 제시하고 있다. 제시된 방법이 많은 설계 경험을 바탕으로 하여 유도된 것이 아니라 음향학적 관점에서 연구되어온 결과들로부터 도출된 것이므로 현장 실무자 관점에서 볼 때 오류가 있을지 모르나 향후 좀더 현실성 있는 설계 방법의 창출에 일조가 되었으면 한다.

  • PDF

Stability of Cantilevered Laminated Composite Structures with Open Channel Section by Geometrical Shape Variations (채널단면의 기하학적 형상변화에 따른 캔틸레버 적층구조물의 안정성 연구)

  • Park, Won-Tae;Chun, Kyoung-Sik;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.169-175
    • /
    • 2004
  • In this paper, the stability of cantilever composite laminated structures with open channel section is studied. This paper deals with the buckling behavior under the variation of the geometrical shape (length ratio, crank angle in the open channel section), the fiber reinforced angle, and so on in order to offer a effective and reliable design data. Also, sensitive analyses are carried out on the stability by the interaction of design factors. Based on this fact, the proper channel section and lamination scheme of composite material cantilever structures are considered in the engineering aspect.

Isogeometric Shape Design Optimization of Structures under Stress Constraints (응력 제한조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계)

  • Ahn, Seung-Ho;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.275-281
    • /
    • 2010
  • In this paper, the design optimization of structures with stress constraints is performed using isogeometric shape optimization method. The stress constraints have an important role in design optimization problems since stress concentration could result in structural failure. To represent exact geometry in analysis, the isogeometric analysis method uses the same basis functions as used in the CAD geometry. The geometrically exact model can be used in both stress and design sensitivity analyses so that it can yield more precise optimal design than finite element one. Through numerical examples, the isogeometric approach turns out to be effective in shape optimization problems under stress constraints.

Statistical Behavior of RC Cooling Tower Shell due to Shape Imperfection (철근콘크리트 냉각탑의 형상불완전에 의한 확률론적 거동)

  • 최창근;노혁천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.147-158
    • /
    • 2000
  • For the large scale reinforced concrete cooling tower shells, the shape imperfection can be introduced due not only to mistakes in the process of construction but also to the long term behavior of concrete. The shape imperfection evokes the additional responses such as displacements and stresses in addition to the design values. In this study, the statistical behavior of the RC cooling tower shell due to the shape imperfection is investigated using the Monte Carlo simulation. The radius of cooling tower and the shell thickness are adopted as the parameters which cause the shape imperfection. The shape imperfection is modeled as a stochastic field rather than the local one of axisymmetric or bulge type of imperfection. The randomness in the radius is shown to be more affecting the structural responses than the randomness in the shell thickness. In addition to the geometrical randomness, the effect of randomness in the modulus of elasticity on the structural response is also investigated and compared with that of the geometrical ones.

  • PDF

Study on Buckling Instability of Expansion Tube using Finite Element Method (유한요소법을 이용한 팽창튜브의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Kwon, Tae-Su;Jung, Hyun-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.147-151
    • /
    • 2010
  • Since the kinetic energy is dissipated through plastic deformation energy generated in expanding process of the tube by a die. In order to successfully absorb the kinetic energy there should be no buckling in the expansion tube during expanding process. The buckling instability of the expansion tubes is affected by the initial boundary conditions, tube thickness and length. In this study, the effects of the tube thickness except length and initial boundary condition on the buckling instability are studied using a finite element method. In addition, Analysis procedure for nonlinear post-buckling analysis of expansion tube is established. There are three kinds of finite element analysis procedures for buckling analysis of expansion tube, quasi-static analysis, linear buckling analysis and nonlinear post-buckling analysis. The effect of the geometry imperfections defined as linear superimposition of buckling modes is considered in the nonlinear post-buckling analysis. The results of finite element analysis indicate that the buckling load increase with increase of thickness of tube and geometry imperfection. Finial buckling shapes are changed with respect to the geometry imperfection.

An Effect of Equipment-Loading on the Buckling Characteristics of Single-Layer Latticed Domes (단층 래티스돔의 좌굴특성에 관한 설비하중의 영향)

  • Jung, Hwan-Mok
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.323-332
    • /
    • 1997
  • This study is aimed at investigating the buckling characteristics of single layer latticed domes with triangular network pattern under the partially concentrated equipment loading in the cases of both having a geometrical imperfection and not having.

  • PDF