• Title/Summary/Keyword: 기하학적 안정성

Search Result 174, Processing Time 0.029 seconds

Hydraulic Stable Analysis of Passive River (자연형 소하천의 수리적 안정성 해석)

  • Rhee Kyoung Hoon;Yim Sang Ju;Oh Chang Ju;Kim Tae Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1244-1248
    • /
    • 2005
  • 최근 몇 년 사이에 자연친화적인 하천복원의 관심이 고조되면서 자연형 하천공법의 적용 초기단계를 걷고 있는 우리나라에서는 생태계 복원과 더불어 인명과 재산을 보호할 수 있는 안전한 자연형 하천 공법의 개발을 위해 수리적 안전성을 지속적으로 관찰하고 분석할 필요가 있다. 그러나 아직까지 우리나라에서는 수리적 및 치수 방재적 측면에서 자연형 하천공법의 안전성에 대한 표준화되고 일관된 분석체계가 아직 구성되지 못하여 자연형 하천정비 공법의 실무적용에 많은 어려움을 겪고 있다. 더구나 소하천 유역은 지역적 특성이 두드러지고 계절에 따른 유량변화가 심하여 하천의 수리적 안전에 대한 분석체계가 적절하게 갖추어지고 있지 못하는 실정이다. 따라서, 본 연구에서는 자연형 하천공법에 따른 소하천의 수리적 안전성과 하천정비 전$\cdot$후의 치수기능의 변화를 Hec-Ras(river analysis system)를 이용하여 적용대상 유역의 수리$\cdot$수문학적. 기하학적, 기상학적 자료들 기본으로 대상유역에 모의해 보았으며 그 결과로부터 자연형 하천정비 전$\cdot$후의 수리적 안전성을 해석하고 하천의 치수기능에 대한 자료를 얻고자 하였다. Hec-Ras를 이용한 연구의 결과 값들은 국내에서의 자연형 하천공법 적용에 따른 하천의 수리적 안전성을 판단하는 표준화된 분석체계를 마련하는데 기초 자료를 제공할 것이며 자연형 하천정비의 기준과 적용을 확립하는데 중요한 의미를 가질 것으로 판단된다.

  • PDF

Mesh Parameterization based on Mean Value Coordinates (중간값 좌표계에 기초한 메쉬 매개변수화)

  • Kim, Hyoung-Seok B.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1377-1383
    • /
    • 2008
  • Parameterization of a 3D triangular mesh is a fundamental problem in various applications of geometric modeling and computer graphics. There are two major paradigms in mesh parameterization: energy functional minimization and the convex combination approach. In general, the convex combination approach is wifely used because of simple concept and one-to-one mapping. However, the approach has some problems such as high distortion near the boundary and time complexity. Moreover, the stability of the linear system may not be preserved according to the geometric information of the mesh. In this paper, we present an extension of the convex combination approach based on the mean value coordinates, which resolves the drawbacks of the convex combination approach. This may be a more practical solution because it is able to generate a stable linear system in a short time.

On the Computer Simulation for the Third Integral and an Application of the Poincare Map in Hamiltonian System (Hamiltonian 비선형계의 기하학적 연구와 제3의 운동상수 응용)

  • 박철희;문용찬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.170-180
    • /
    • 1986
  • 본 연구에서는 2자유도 Hamiltonian 운동계에서 비선형 정규모우드(normal mode)들의 안정성을 예측하기 위한 제3의 운동상수를 선형계의 진동수비가 1:1이고 포텐셜이 4차항까지 우함수인 일반계에 적용하여 발전시켰다. 이는 Hamiltonian을 정규모우드로 바꾸는 B-G변환과 함수들을 부호처리함과 Poincare map을 이용하다. 비선형계에서 비선형상수에 따라 모우드가 bifurcate되며, 각각의 모우드 안정성은 제3의 운동상수와 Poincare map으로 정확히 판정할 수 있다는 결론을 얻었다.

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.

Balance Control Scheme of a Biped Robot using Geometrical Information of a Reference Object in an Input Image (영상에 포함된 참고물체의 기하학적 정보를 이용한 이족로봇의 균형제어기법)

  • Park, Sang-Beom;Han, Yeong-Jun;Han, Heon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.253-256
    • /
    • 2007
  • 본 논문은 로봇이 영상을 통해 획득한 특정물체의 기하학적 정보를 이용하여 이족로봇이 안정적으로 보행할 수 있게 하기 위한 균형제어기법을 제안한다. 영상은 핀 홀 카메라 모델을 통해 획득하였으며, 영상에 포함되는 특정물체의 특징성분에 대한 변위와 로봇의 자세와의 상관관계는 핀 홀 카메라 모델을 이용하여 공간좌표계의 특징정보를 평면좌표계의 영상정보에 매칭시킨 후, 특징들의 변위에 따른 로봇 관절 좌표계의 변위를 추정하는 방법으로 구할 수 있었다. 본 논문에서 제안하는 균형제어기법은 별도의 센서없이 카메라만을 이용하여 이족보행 로봇의 균형제어가 가능하다는 장점을 가지며, 소형이족로붓을 이용한 실험을 통해 그 효율성을 검증하였다.

  • PDF

Prediction of Saturation Time for the Soil Slopes due to Rainfalls (지속적인 강우에 의한 토사사면의 포화시간 예측)

  • Park, Sungwon;Han, Taekon;Kim, Hongtaek;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.67-74
    • /
    • 2007
  • Many studies for slope stability studies have indicated that the infiltration of rainwater into a slope decrease the slope stability. In order to minimize damage caused by slope failure, most design codes suggest that the slope stability be analyzed by saturated condition during rainy season. However it would be excessively conservative condition that every soil slope is saturated in rainy season irrespective of rainfall intensity, soil type and slope geometry. In addition, because most soil slopes are in an unsaturated state, it is necessary to consider the unsaturated characteristics of slope. This paper suggests a prediction method of saturation time for the weathered granite soil slopes due to rainfalls. The finite element analysis of transient water flow through unsaturated slope was used to investigate effects of soil-water characteristics, permeability at saturation, slope geometry, and rainfall intensity. From the result of these analyses, the prediction charts considering soil-water characteristics, permeability at saturation, and slope height were proposed in this study. It is possible to the time required to be saturated slope after rainfall.

  • PDF

Hydrogeological Performance Assessment for Underground Oil Storage Caverns (지하유류비축시설 수리안정성 평가방안)

  • 김천수;배대석;김경수;고용권;송승호
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.229-245
    • /
    • 1997
  • There are Common aspects between the underground oil storage cavern and the radioactive waste disposal facility. Both facilities use appropriately the intrinsic natural berrier characteristics of the rock mass and additionally the engineered barrier system for the long term safety. The geological structures and their hydrogeological characteristics in a faactured rock mass act a major role in the safety and performance of the underground oil storage facility through the design, construction and the operation stages. Because the fracture system distributed in a fractured rock block is complicated owing to their own geometrical and hydrogeological attributes, the hydrogeological perforrmrnce of the facility would depend mainly upon the understandings of their characteristics. This study reviews the uncertainties and key issues which have to be considered to analyse the groundwater flow system in a fractured rock mass and proposes the techniques applicable to characterize the hydrogeological parameter.

  • PDF

The Safety Assessment of Embankment by Three Dimensional Electrical DC Modeling (3차원 전기비저항 모델링을 통한 제체의 안정성 분석 연구)

  • Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.447-453
    • /
    • 2008
  • Recently, the electrical DC survey has frequently been performed to assess the safety of embankment. This study showed that the damaged section of embankment could be appropriately detected by the survey only when the three dimensional effect was correctly considered. The shape of the three dimensional embankment was numerically implemented, and a proper modeling was performed to confirm the effect by analyzing the apparent and inverted true resistivity. Then, the field work was carried out. The three dimensional interpretation distinguished the erroneous weak zones from the geometrical artifact, and the embankment was ensured as safe both by the additional survey performed in rainy season and the partial excavation for direct observation.

The Influence of Unbonded Prestressing Force on the Lateral Torsional Stability of Girders (비부착 긴장력이 거더의 횡비틀림 안정성에 미치는 영향)

  • Lee, Jong-Han;Lee, Kun-Joon;Kighuta, Kabuyaya
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • An experiment was carried out to evaluate the lateral torsional stability of a girder with respect to the location and magnitude of prestressing force. The test of evaluating the lateral displacement and stability of a girder could cause an unexpected result due to various parameters, such as material nonlinearity, initial geometric imperfections, prestressing force, and loading and support conditions. Therefore, a small model testing was programmed to control the various parameters and assess the lateral torsional stability with respect to the prestressing force. This study proposed and fabricated an experimental apparatus that can satisfy the loading and in-plane and out-of-plane support conditions and also contol the prestressing force. The result of the experiment showed that the lateral torsional stability increased when the prestressing force was applied in the bottom flange of the girder. As a result, this study proposed an analytical equation that can account for the effect of the prestressing force in the lateral torsional stability of a girder.

Stability Analysis of DMC's Block Geometry (DMC 카메라의 블록기하 안정성 분석)

  • Lee, Jae One;Lee, Dong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.771-779
    • /
    • 2009
  • Digital topographical maps used for GIS DB are mainly produced by the traditional way of analogue aerial photogrammetry. Therefore, analogue photos are only available for digital mapping after preprocessing such as film developing, printing and scanning. However, digital aerial camera is able to get digital image directly without preprocessing and thus the performance and efficiency of photogrammetry are extremely increased. This study aims to investigate geometric stability of digital aerial frame camera DMC (Digital Modular Camera). In order to verify the geometric stability of digital aerial camera DMC, some different block conditions with and without cross strips, GPS/INS data and variation of GCPs are introduced in the block adjustment. The accuracy results of every block condition were compared each other by computation of residuals of exterior orientation (EO) parameters. Results of study shows that the geometric stability of the block adjustment with cross strips is increased about 30% against without cross strips. The accuracy of EO parameters of block adjustment with cross strips is also increased about 2cm for X-coordinate, 3cm for Y-coordinate, 3cm for Z-coordinate, and 6" for omega, 4" for phi and 3" for kappa.