• Title/Summary/Keyword: 기하학적 비선형 구조해석

Search Result 208, Processing Time 0.029 seconds

Automatic Design of Steel Frame Using Nonlinear Analysis (비선형 해석을 이용한 강뼈대구조물의 자동화설계)

  • Kim, Chang Sung;Ma, Sang Soo;Choi, Se Hyu;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.339-348
    • /
    • 2002
  • The study developed an automatic design method of steel frames which uses nonlinear analysis. The geometric nonlinearity was considered using stability functions. Likewise, the transverse shear deformation effect in a beam-column was explained. A direct search method was used as an automatic design technique. The unit value of each part was evaluated using LRFD interaction equation. The member with the largest unit value was replaced one by one with an adjacent larger member selected from the database. The weight of the steel frame was considered as an objective function. On the other hand, load-carrying capacities, deflections, inter-story drifts, and ductility requirement were used as constraint functions. Case studies of a two-dimensional and a three-dimensional two-story frames were presented.

Analysis of filament Wounded Composite Rocket Motor (필라멘트 와인딩 복합재료 연소관의 구조적 안정성 연구)

  • Lee Yoon-kyu;Kwon Tae-hoon;Lee Won-bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.278-281
    • /
    • 2004
  • The purpose of this paper is to show a reliable analytical method to predict the deflections of F/W Composite Motor Case. Structural analysis and testing of a Carbon/Epoxy Composites Motor Case for Pressure Loadings were performed. This paper presents the development of 3-D layered axi-symmetric solid element for finite element analysis. Finite element analyses were preformed considering fiber angle variation in longitudinal and thickness direction by ANSYS. The analytical results agree well with experimental results.

  • PDF

Probabilistic Nonlinear Analysis of Semi-Rigid Frames Considering Random Elastic Modulus (탄성계수 불확실성을 고려한 반강접 프레임 구조의 확률적 비선형 거동 해석)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.191-198
    • /
    • 2013
  • In this paper, the effects of uncertain material constant on the nonlinear behavior of steel frames with semi-rigid joints are examined. As to the probabilistic model, a normal distribution is assumed to simulate the uncertain elastic modulus of steel material. A nonlinear structural analysis program, which can consider both semi-rigidity in joints of the steel frames and uncertainty in the material constant, is developed. Including the geometric, material and connection nonlinearites which are the parameters of nonlinear behavior of steel frames, probabilistic analysis is conducted based on the Monte-Carlo simulation. In the probabilistic analyses, we consider the three different cases for random variables. The deterministic analysis results are shown to be in good agreement with those of the previous research results in the literature. As to the probabilistic analyses, it is observed that the coefficient of variation(COV) of displacements increases as the loading increases, and that the values of COV are dependent on the structural features of the frames.

The Influence of the Structural Parameters on the Shape Errors of CRTS Reflector (CRTS 반사판의 구조적 인자가 형상오차에 미치는 영향)

  • 송원근;김승덕
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • A geometric non-linear finite element formulation of CRTS reflector subjected to displacement loads, corresponding to the successional assembly steps of the reflector, is presented in order to determine the initial static equilibrium state based on the displacement incremental method. Parametric analyses of the influence of cables and mechanical properties of the reflector on the shape error between reference and equilibrium surfaces have been studied. These results of the present study are compared with the others using Galerkin mothod and NASS 98 program to demonstrate the feasibility.

A study of the Snapping investigations of Seoul Southwest Baseball Dome (서울 서남권 돔 야구장의 Snapping 검토에 관한 연구)

  • Kim, Seung-Deog;Kim, Nam-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.133-140
    • /
    • 2010
  • This paper studies on the instability behaviour of the Seoul southwest baseball dome. The nonlinear Snapping phenomenon of the structure is investigated about the load mode by the design load of analysis structure and these combined loads. The initial imperfection obtains the buckling mode through the eigenvalue analysis of the tangential stiffness matrix and uses this for the nonlinear analysis. However, the buckling of members or the local buckling, and etc don't consider in the research range of this research task. Also it is limited the overall buckling phenomenon.

  • PDF

Nonlinear Analysis of Space Trusses Using the Combined Arc-Length Method (복합 호장법을 이용한 공간 트러스의 비선형 해석)

  • 석창목;권영환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.361-369
    • /
    • 2001
  • This paper deals with numerical efficiency of nonlinear solution technique for space trusses. It will propose the combined Arc-length method to trace structural behavior after reaching buckling load as opposed to the current Arch-length method. The combined Arc-length method uses the current stiffness parameter as a control variable. It uses Secant-Newton method in stable path and applies Arc-length method in unstable path. To evaluate efficiency of solution technique, the accuracy of solution, convergence, and computing time concerning illustrative numerical examples are compared with the current Arc-length method. It show that the combined Arc-length method, as proposed in this paper, is superior to the current Arc-length method in numerical nonlinear analysis.

  • PDF

Stability Analysis of Steel Cable-stayed Bridges under Construction Stage (폐합 전 강사장교의 안정성 해석)

  • Kim, Seung-Jun;Shim, Kyung-Suk;Won, Deok-Hee;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.99-111
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges in the construction stage, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the P-${\Delta}$ effects of the girder and mast, and the large displacement effect. Initial shape analysis and construction-stage analysis were performed to determine the equilibrium of the structure in the construction stage. After that, geometric nonlinear analysis was performed to study structural stability. In this study, the weight of the derrick crane and the key segment were considered the main external loads, which were applied to the tip of the center span. The cable arrangement type and the stiffness ratios of the girder and mast were considered the main parameters of the analytic research. Based on the results of the analysis, the change in the buckling mode and critical load factors with respect to the cable arrangement type and the stiffness ratios of the girder and mast was investigated. The buckling modes of the steel cable-stayed bridges in the construction stage were classified, and the ranges of the stiffness ratios of the girder and mast, which show these classified buckling modes, were suggested.

Time-Dependent Nonlinear Analysis of Cable-Supported Prestressed Concrete Frames (케이블로 지지된 PC뼈대의 시간의존적 비선형 해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.33-47
    • /
    • 1992
  • A study for the material and geometric nonlinear analysis of segmentally erected cable-supported prestressed concrete plane frames including the time-dependent effects due to load history, creep, shrinkage, aging of concrete, and relaxation of prestressing steel and cable is presented. Updated Lagrangian formulation is used to account for the nonlinear behavior of the structure. For the time-dependent analysis. the time domain is divided into a discrete number of intervals, and a step-forward integration is performed as the solution progresses in the time domain. At each time step. a nonlinear finite element analysis is performed in the space domain. Segmental erection methods are implemented by providing the capability to change the configuration of the structure at any time step of the solution. The computer program CFRAME is developed and a series of numerical examples are presented to study the validity of the program.

  • PDF

3D Finite Element Analysis of High Tension Bolted Joints (고장력 볼트 이음부의 3차원 유한요소 해석)

  • Shim, Jae Soo;Kim, Chun Ho;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.407-414
    • /
    • 2004
  • Bridges in common use are expected to have more varieties of load in their connected members and bolts than in construction. Faults in connection members or bolts occur so often according to the time flow. One of the purposes of this study is to find out the behavior and structural features of high-tension bolted joints with faults that are very difficult and cost much to find out through experimentation with finite element analysis. Another purpose of this study is to provide sufficient data, estimated experimental results, and the scheme of the test plate for an economical experimental study in the future. Surveys of bridges with a variety of faults and statistical classifications of their faults were performed, as was a finite element analysis of the internal stress and the sliding behavior of standard and defective bridge models. The finite element analysis of the internal stress was performed according to the interval of the bolt, the thickness of the plate, the distance of the edge, the diameter of the bolt, and the expansion of the construction. Furthermore, the analysis explained the sliding behavior of high-tension bolt joints and showed the geometric non-linear against the large deformation, and the boundary non-linear against the non-linear in the contact surface, including the material non-linear, to best explain the exceeding of the yield stress by sliding. A normally bolted high-tension bolt joint and deduction of bolt tension were also analyzed with the finite element analysis of bridge-sliding behavior.

POST-BUCKLING ANALYSIS OF PRESTRESSED CONCRETE BEAN-COLUMNS BY THE DISPLACEMENT CONTROL STRATEGY (변위제어법에 의한 프리스트레스트 콘크리트 보-기둥 구조의 후좌굴거동 해석)

  • 강영진
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.2
    • /
    • pp.121-132
    • /
    • 1989
  • 유한요소법을 바탕으로 한 프리스트레스트 콘크리트 평면 보-기둥 구조의 후좌굴 거동에 대한 수직해석법을 제시하였다. 콘크리트의 균열, 변형연화 및 PS강재의 항복과 같은 재료 비선형성을 고려하였다. 좌굴 거동 연구에 필수적 요소인 기하학적 비선형성을 Updated Lagraugian Formulation에 의하여고려하였다. 현재의 재료성질 및 변형상태에 부합하는 단분형 평형방정식을 수립하고 이것을 불평형 가중보정에 의한 Newton-Raphson 반복법으로 푼다. 좌굴후 발생하는 하중변형 곡선의 하련부는 비선형 평형 방정식의 해법중 일반적으로 많이 사용되는 가중 단분법이 아니라 변위단분법을 사용함으로써 올바르게 추적한다. 요소내의 재료성질변화는 층적분법에 의하여 고려한다. 본 논문에서는 콘크리트 균열에 의한 중립축이동의 영향을 정확히 고려하기 위하여 추가적으로 축방향변위에 대한 내부자유도를 설정하였다. 본 논문에서 제안하는 방법의 정당성과 응용성을 나타내 보일 수 있는 수직해석 예제를 제시하였다.