• Title/Summary/Keyword: 기하학적인 구조

Search Result 1,017, Processing Time 0.028 seconds

Flow Characteristic Analysis in Meandering Channels by the Numerical Analysis (수치해석에 의한 사행하천에서의 흐름특성 해석)

  • Son, Ah-Long;Han, Kun-Yeun;Huh, Yun-Hyoung;Ryu, Jong-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.248-252
    • /
    • 2010
  • 홍수기 호우로 인한 피해는 대부분 하천구역에서 발생되며, 이러한 피해는 인간에게 직 간접적으로 영향을 미치게 된다. 자연 상태의 하천형상은 대부분 호우로 인한 홍수로 인해 자연스럽게 만들어지게 되며, 대부분 사행하천의 형태를 띠게 된다. 사행하천에서의 흐름의 기하학적 특성은 성장이나 사멸, 또는 두 가지 모두의 형태를 보인다. 사행하천에서의 흐름 및 유속 분포는 하천제방 보호, 주운, 취수, 그리고 유사 이동 및 퇴적 패턴과 관련하여 실용적인 관점에서 연구하여야 하는 하천수리학에서는 매우 중요한 주제이다. 그리고 사행하천은 특히 만곡부가 교호적으로 나타나는 곳에서의 흐름구조가 매우 복잡하다. 이러한 사행하천에서는 회전방향이 교호적으로 바뀌는 나선형의 흐름(2차류)이 3차원적으로 발생하는 것으로 알려져 있다. 본 연구에서는 사행하천이 많은 국내 하천특성을 고려하여, 하천 만곡부에서의 흐름특성을 분석하고자 하였으며 2차원 CCHE2D 와 3차원 FLOW3D 모형을 적용하였으며 가상 하도에 대하여 수리모형 실험의 실측치와 비교하여 모형의 정확성과 안정성을 검증하였다. 그리고 남강댐 하류에 대하여 만곡부의 흐름특성(유속 분포 및 최대유속경로, 수위분포, 2차류 거동, 편수위, 전단응력 분포 등)을 분석함으로써, 하천 만곡부에서의 수리적 특성을 보다 정확하게 제시하고자 한다. 모의 분석결과 동일 하도에 대하여 유량을 변동시킬 경우, 유량이 증가할수록 만곡부에서의 수리영향이 더욱 뚜렷해짐을 알 수 있었고 2차원 모형보다 3차원모형의 결과의 정확도가 더 높은 것으로 분석되었다. 곡률반경이 1,300~1,600 정도인 실제하천에 적용한 결과, 수위의 경우 2차원 결과가 3차원 결과보다 최대 3%정도 수위가 높은 것으로 나타났으며, 또한, 상관계수가 평균 0.91의 값을 보이고 있어 2차원모형과 3차원모형의 결과가 비교적 잘 일치하는 것으로 분석되었다. 흐름 분석을 통해서 만곡부에서의 최대유속은 최정점(apex)에서 보다는 오히려 최정점 이전 하도의 내측에서 발생하였으며, 정점에서의 종단유속은 감소하지만 횡단유속은 오히려 크게 증가하는 경향을 보이고 있었다. 따라서 하천설계시 사행하천의 제방 안정성 확보를 위하여 종단유속 뿐만 아니라 횡단유속 또한 고려할 필요가 있음을 확인하였다. 또한 남강댐 하류 만곡부에서의 내측 및 외측의 수위를 분석한 결과, 제방 외측의 수위가 평균수위에 비해 최대 약 37cm정도 증가하는 것으로 분석되었다. 따라서 만곡부에 대한 하천제방설계시 좌, 우안의 여유고를 일률적으로 적용하기 보다는 만곡에 따른 흐름특성을 분석하여 설계에 적용하여야 안정성 및 경제성을 동시에 확보할 수 있을 것으로 사료된다.

  • PDF

Effective Beam Width for Flat-Plate Systems Having Edge Beams under Lateral Loads (수평하중을 받는 테두리보가 있는 플랫플레이트 시스템의 유효보폭계수)

  • Han, Sang-Whan;Cho, Ja-Ock;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2008
  • The purpose of this study is to propose frame analysis method for flat plate slabs having edge beam under lateral loads. Flat plate system is defined as the system only with slab of uniform thickness and column. However, the slab system generally incorporate edge beams at exterior connection in actual design. ACI 318 (2005) allows three methods for conducting flat plate system analysis subjected to lateral loads. There are the finite element method (FEM), the equivalent frame method (EFM), and the effective beam width method (EBWM). Among methods, the EBWM enables us to analyze practically by substituting the actual slab to beam element. In this model, the beam element has a thickness equal to that of the slab, and effective beam width equal to some fraction of the slab transverse width. However, the established EBWM was generally proposed for variables of geometry or stiffness reduction factor and seldom proposed for the effect of edge beams. This study verifies that, in the case of flat plate system having edge beams at exterior connections, the lateral stiffness is considerably larger than without edge beams. Therefore it need to analysis method for considered the effect of edge beams. In this study, an analysis model is proposed for the flat plate system having edge beams under lateral loads by considering the effect of edge beams. To verify the accuracy of proposed model, this study compared results of the proposed EBWM with results of FEM of flat plate systems having edge beams under lateral loads. Also, the proposed approach is compared with experimental results of former research.

The Mechanical Behavior of Jointed Rock Masses by Using PFC2D (PFC2D를 이용한 절리암반의 역학적 물성 평가연구)

  • Park Eui-Seob;Ryu Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.119-128
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of jointed rock masses is very important for the design of tunnel and underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is the selection of the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. In this paper, a 30\;m\;\times\;30\;m\;\times\;30\;m m jointed rock mass of road tunnel site was analyzed. h discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of jointed rock masses were determined. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, getting the mechanical response of the PFC model doesn't require a user specified constitutive model.

Dependency of Tangential Friction Angle and Cohesion of Non-linear Failure Criteria on the Intermediate Principal Stress (비선형 암석 파괴조건식의 접선 마찰각과 점착력의 중간주응력 의존성)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2013
  • Although Mohr-Coulomb failure criterion has limitations in that it is a linear criterion and the effect of the intermediate principal stress on failure is ignored, this criterion has been widely accepted in rock mechanics design. In order to overcome these shortcomings, the Hoek-Brown failure criterion was introduced and recently a number of 3-D failure criteria incorporating the effect of the intermediate principal stress on failure have been proposed. However, in many rock mechanics designs, the possible failure of rock mass is still evaluated based on Mohr-Coulomb criterion and most of practitioners are accustomed to understanding the strength of rock mass in terms of the internal friction angle and cohesion. Therefore, if the equivalent Mohr-Coulomb strength parameters of the advanced failure criteria are calculated, it is possible to take advantage of the advanced failure criteria in the framework of the Mohr-Coulomb criterion. In this study, a method expressing the tangential Mohr-Coulomb strength parameters in terms of the stress invariant is proposed and it is applied to the generalized Hoek-Brown criterion and the HB-WW criterion. In addition, a new approach describing the geometric meaning of the ${\sigma}_2$-dependency of failure criteria in 3-D principal stress space is proposed. Implementation examples of the proposed method show that the influence of the intermediate principal stress on the tangential friction angle and cohesion of the HB-WW criterion is considerable, which is not the case for the 2-D failure criterion.

A Study on Efficient Management of Traffic Flow on Intersection (효율적인 신호교차로 운영방안 연구)

  • Hwang, In-Sik;Kim, Su-Sung;Oh, Se-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.45-55
    • /
    • 2009
  • This study was intended to increase efficiency of traffic flow management on intersection. The result suggested to establish a left-turn at own risk lane to increase efficiency of traffic flow on intersection. The scope of the research was to investigate the geometric structure of a signal-controlled intersection, traffic volume(density) with respect to directions and traffic signal display, and to select a signalling intersection into which a car waiting for a traffic signal enters by adjusting the display sequence of traffic signal. The delay with respect to directions and for the whole intersection was compared for the current situation and an improvement plan. Using TSIS, a traffic analysis package, the traffic situation on an intersection was investigated. Based on the simulation result for Seok-Jeon intersection in Ma-San selected from the field investigation of intersections to which an improvement plans would be applicable, the waiting time in the direction without a entering traffic signal was decreased to be 78.6 seconds per car and that of the direction expecting the increase of waiting time was increased by 4 seconds per car only. It was confirmed that the waiting time for the whole intersection was improved.

  • PDF

A Study on the RCS Analysis and Reduction Method of Unmanned Surface Vehicles (무인수상정의 RCS 해석 및 감소 방법에 대한 연구)

  • Han, Min-Seok;Ryu, Jae-Kwan;Hong, Soon-Kook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.425-433
    • /
    • 2019
  • In this paper, the RCS analysis of the 10m unmanned surface vehicles was performed, and the factors of RCS increase were analyzed. Modeling techniques by transforming a geometric shape can reduce the RCS area, which can be used to develop stealth unmanned surface vehicles. In order to reduce the RCS, the existing Top Mast part was moved 1m to the tail part, the 5 degree tilt angle was moved below 0.5 m, and additional guided walls were installed to minimize the influence on the center and surrounding corner reflecting structures. As a result of comparing and analyzing the RCS analysis value with the existing model, it can be seen that the reduced countermeasure model is -3.79 dB lower than the existing model for all elevations. In particular, it can be seen that the strong scattering phenomenon is substantially removed in the region except the sacrificial angle region. In addition, it can be seen that in the case of -5m to 2m where the guide wall is added, the reflected signal is improved up to 20 to 40 dB or more, so that it does not appear on the 2D ISAR image. RCS analysis of unmanned surface vehicles explained the process of analyzing and identifying problem location through distance profile analysis and ISAR image analysis.

Development of Numerical Model for Mixed Soil Problems Using Dry Bulk Density and Investigation of Its Numerical Stability (건조체적밀도를 적용한 혼합토사 수치모델의 개발과 수치적 안정성 평가)

  • Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.110-121
    • /
    • 2021
  • The importance of tidal flats lost due to industrialization has recently received attention, and attention is being paid to the creation of artificial tidal flats and maintenance of natural tidal flats. However, there is still a lack of understanding about the behavioral characteristics of mud, mud, and sand that form tidal flats. Although research on the movement characteristics of mixed soils such as tidal flats has been conducted through field investigations and hydraulic experiments, interest in developing a numerical model based on these results has not yet reached. In this paper, the purpose of this paper is to establish a mixed soil model that can efficiently manage the low quality of the tidal flats. In constructing a model for reproducing the surface movement of mixed soil, the numerical stability of the reproduction and movement of sand and mud constituting the mixed soil in the numerical model should be considered first, so first, the volume of sand and mud constituting the mixed soil A mixed soil model representing the relationship was proposed based on a topographical diagram representing the geometric structure of the mixed soil. In order to consider the dry bulk density of the mixed soil, it was possible to consider the dry bulk density of the mud by introducing the water content of the mud containing water. In addition, it was confirmed that the mud and sand movement calculation according to the slope collapse of the mixed soil was stably performed through the calculation of the slope collapse of the mixed soil through the numerical analysis model to which the proposed mixed soil model was applied.

Collapse Type and Processes of the Geumosan Caldera in the Southern Gumi, Korea (구미 남부 금오산 칼데라의 함몰 유형과 과정)

  • Hwang, Sang Koo;Son, Young Woo;Seo, Seung Hwan;Kee, Weon-Seo
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • The Gumi basin, situated in the mid-southeastern Yeongnam Massif, has the Cretaceous stratigraphy that is divided into Gumi Formation, andesitic rocks (Yeongamsan Tuff, Busangni Andesite), rhyolitic rocks (Obongni Tuff, Doseongul Rhyolite, Geumosan Tuff) and Intrusives (ring dikes, other dikes) in ascending order. The Geumosan Tuff is composed mostly of many ash-flow tuffs which are associated with Geumosan caldera along with the ring dikes. The caldera is outlined by ring faults and dikes and has about 3.5 × 5.6 km in diameters. The intracaldera volcanics show a downsag structure that is dipped inward in their flow and welding foliations. The caldera block represent an asymmetric subsidence, which drops 350 m in the northern margin and 600 m in the southern one. Based on these data, the Geumosan caldera is geometrically classified as an asymmetric piston subsidence caldera that suggests a single caldera cycle. The caldera reflects the piston subsidence of the caldera block bounded by the outward-dipping ring faults following a voluminous eruption of magma from the chamber. The downsag in the caldera block refers to the downsagging during the initial subsidence at the same time as the full development of the bound fault. In the ring fissures following the sagging, magma was injected due to the overpressure of magma chamber caused by subsidence.

Determination of Optimal Section for Corrugated Steel Plates (파형강판의 최적단면 결정)

  • Na, Ho-Sung;Choi, Dong-Ho;Yoo, Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.5-12
    • /
    • 2011
  • In this paper, after studying structural performance for the representative corrugated steel plate used in Korea, we proposed the optimum shape for section of corrugated steel plate considering a width of steel plates that can be produced currently in the factory. Using AISI(1986) in examination for the performance of the corrugated steel plate, we determined the mechanical limit of the optimum sections considering shear force and bending moment of corrugated steel plate and also determined the geometric limit of them considering formability, shapes and ratio between width of steel plate before forming and that after forming. As a result of examination for performance of steel plate applying algorithm for searching optimal sections algorithm developed in this study to the existing representative corrugated steel plate, allowable force and moment of inertia indicated the maximum values at bending radius 76mm and internal bending angle $50^{\circ}$. And as an application result of the optimum design system that used SS490 with 1,550mm of width and 4,700mm of length considering current production situation in Korea, we developed the new section with more than 2 times of structural performance comparing with existing corrugated steel plate.

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.