• Title/Summary/Keyword: 기포 크기

Search Result 202, Processing Time 0.028 seconds

Study on Flow Interaction between Bubble and Phase Change Material according to Injection Location (주입 위치에 따른 기포와 상변화물질의 유동 상호 작용에 관한 연구)

  • Min Hyeok Kim;Yun Young Ji;Dong Kee Sohn;Han Seo Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.75-84
    • /
    • 2023
  • In this study, we conducted analysis of bubble dynamics and flow of liquid phase change material(PCM) using shadowgraphy and particle image velocimetry(PIV). Characteristics of internal flow varied depending on locations of injection when solid PCM was liquefied from heated vertical wall. When bubbles rose immediately, they exhibited elliptical shape and zigzag trajectory. In contrast, when bubbles rose after merging at the bottom of solid PCM, with equivalent diameter for the inter-wall distance of 0.64 or greater, they showed a jellyfish shape and strong rocking behavior. It was observed by the PIV that the small ellipse bubbles made most strong flow inside the liquid PCM. Furthermore, the flow velocity was highest in the case of front injection, as the directions of temperature gradients and bubble-driven flow were aligned. The results underscore the significant influence of injection location on various characteristics, including bubble size, shape, rising path of bubbles, and internal flow.

Bubble Behavior in Centrifugal Fluidized Bed of Fine Particles (원심유동층에서 Al2O3의 기포 거동에 관한 연구)

  • Rhee, Kwan-Seok;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1446-1452
    • /
    • 2009
  • The behavior of bubbles in a centrifugal fluidized bed with a 340mm inner diameter, 195mm high was observed by photographs using 10.5${\mu}m$and 21.5${\mu}m$mean diameter of $Al_2O_3$particles as bed materials at each of 400rpm, 600rpm, 800rpm, and 1000rpm number of rotations of the rotor. At these experimental ranges, the experimental results clearly proved the effect of number of rotations of the rotor on the behavior of bubbles in the centrifugal fluidized bed. As the number of rotations of the rotor increased, the gas velocity at which bubbles begin to be formed also increased but diameter of bubbles decreased. And sizes of the bubbles were relatively small.

Accelerated testing for evaluating bubble quality within quartz glass crucibles used for manufacturing silicon single crystal ingots (실리콘 단결정 잉곳 제조용 석영유리 도가니 내 기포 품질평가를 위한 가속시험)

  • Gyu Bin Lee;Seung Min Kang;Jae Ho Choi;Young Min Byeon;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.91-96
    • /
    • 2023
  • To verify the quality of bubbles during the use of quartz glass crucibles (QC), an appropriate accelerated testing method was proposed. The bubble state of discarded waste crucibles obtained from actual Czochralski (Cz) processes was analyzed, and optimal heat treatment conditions were suggested by varying temperature, pressure, and time using the QC test piece. By subjecting the samples to heat treatment at 1450℃, 0.4 Torr, and 40 hours, it was possible to control the bubble size and density to a similar level as those generated in the actual Cz process. In particular, by selecting a relatively lower pressure of 0.4 Torr compared to the typical range of 10~20 Torr applied in the Cz process, the time required for accelerated bubble formation testing could be reduced. However, it was determined that increasing the heat treatment temperature to 1550℃ led to the phenomenon of Ostwald ripening, resulting in larger bubbles and a rapid decrease in density. Therefore, it was concluded that it was not a suitable condition for the desired b ake test.

Characteristics of Wakes in a Viscous Liquid Medium of a Simulated GTL Process (모사된 GTL공정의 점성액체 매체에서 wake의 특성)

  • Lim, Dae Ho;Jang, Ji Hwa;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.571-576
    • /
    • 2011
  • Characteristics of bubble driven wakes were investigated in a simulated GTL process(0.102 m ${\times}$ 1.5 m in height) with viscous liquid medium. Effects of gas velocity(0.04 ~ 0.12 m/s) and liquid viscosity(0.001 ~ 0.050 $Pa{\cdot}s$) on the wake characteristics such as rising velocity, frequency, size and holdup were determined by employing a resistivity probe method. The wake phase formed behind the rising multi-bubbles as well as single bubbles were detected effectively from the conductivity fluctuations measured by the probe. Compressed, filtered and regulated air and aqueous solutions of Carboxy Methyl Cellulose(CMC) were used as a dispersed gas phase and a continuous liquid medium, respectively. It was found that the rising velocity and size of wake phase increased with an increase in gas velocity or liquid viscosity. The holdup and frequency of wake phase increased with increasing gas velocity due to the increase of gas input into the process with increasing gas velocity. However, the values of holdup and frequency of wake phase decreased with increasing liquid viscosity, since the size of bubbles and thus that of wakes increased with increasing liquid viscosity. The ratio of wake holdup to that of gas phase, which was in the range of 0.25 ~ 0.48, increased with an increase in liquid viscosity but decreased with gas velocity. The wake characteristics were well correlated in terms of operating variables within this experimental conditions.

Gas and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle -Effects of Flow Zone Sizes- (단일노즐을 사용한 내부순환 공기리프트 반응기에서 기체 및 액체의 유동특성 - 유동지역의 크기영향 -)

  • Jang, Sea-Il;Kim, Jong-Chul;Jang, Young-Joon;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.901-906
    • /
    • 1998
  • Gas and liquid flow characteristics were investigated in an internal circulation airlift reactor using a single nozzle for a gas distributor. In three reactors with different diameters of the downcomer and heights of the riser, the gas holdup in the individual flow zone and the impulseresponse curve of tracer for an air-water system were measured for various gas velocities and reactor heights. Experimental results showed that the flow behavior of bubbles in the riser was the slug flow due to strong coalescences of bubbles and that the bubble flow pattern in the downcomer was the transition bubble flow for the smaller diameter of the downcomer, however, it was the homogeneous bubble flow for the larger one. And mean gas holdups in the individual flow zone and the reactor were greatly increased with decreasing the diameter of the downcomer for the equal ratio of height of the top section to that of the riser. Also, the mixing time was much effected by the height of the top section of reactor and for the equal ratio of height of top section to that of the riser, it was increased with increasing the diameter of the downcomer and the height of the riser. Flow characteristics of liquid were mainly varied with the bubble flow pattern in the downcomer and the size of the top section of reactor. And circulation velocities of liquid in the riser were increased with increasing gas velocities and the size of the top section of reactor, and for the equal ratio of height of top section to that of the riser, they were increased with increasing the diameter of the downcomer and the height of the riser.

  • PDF

Modeling of Scattered Signal from Ship Wake and Experimental Verification (항적 산란신호의 모델링과 실험적 검증)

  • Ji, Yoon-Hee;Lee, Jae-Hoon;Kim, Jea-Soo;Kim, Jung-Hae;Kim, Woo-Shik;Choi, Sang-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • A moving surface vessel generates a ship wake which contains a cloud of micro-bubbles with radii ranging between $8{\sim}200{\mu}m$. Such micro-bubbles can be detected by active sonar system for more than ten minutes depending on the size and speed of the surface vessel. In this paper, a reverberation model for the ship wake is presented. The developed model consists of the acoustic scattering model due to the distribution of the micro-bubbles and the kinematic model for the moving active sonar. The acoustic scattering model is based on the volume integration, where the volume scattering strengths are obtained from the spatial distribution of micro-bubbles. Since the directivity and look-direction of active sonar are important factors for moving active sonar, the kinematic model utilizes the Euler transformation to obtain the relative motion between the global and local coordinates. In order to verify the developed model, a series of sea experiment was executed in September 2007 to obtain the spatial-temporal distribution of a bubble cloud, and analyzed to be compared with the simulation results.

Removal of E.Coli and Strawberry growth monitoring by generated Ultra Fine bubble in water (수중 초미세기포에 의한 대장균 제거 및 딸기 성장 모니터링)

  • Kim, Jong Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.199-199
    • /
    • 2019
  • 친환경적인 산업기술인 초미세기포(Ultra Fine Bubble, 이하 UFB) 제조 기술은 농업, 수처리, 그리고 환경재생 등 다양한 분야에서 적용되고 있다. UFB는 1,000nm 이하의 크기를 가진 기포로서 용존산소를 통한 농작물 성장 촉진 및 수중의 대장균 및 세균제거 등 다양한 성질을 지니고 있다. 본 연구는 기존의 방식과는 다르게 자왜현상을 메카니즘으로 갖는 타격식으로 제조된 UFB 생성장치를 통해 생성된 200nm이하의 크기를 가진 UFB를 실제 딸기 농장에 적용하여 딸기의 성장을 모니터링하고 살균 성능을 가진 화학제품과 UFB를 대장균에 적용하여 대장균 제거효율을 비교하였다. 딸기농장에 기존에 사용되던 지하수 대신 UFB를 주입하여 딸기성장 초기단계의 DO농도를 측정하고 딸기 생식단계에 산소포화도에 대한 질산염의 농도를 측정하여 상관관계를 분석하였으며 각각의 딸기 열매를 수확하여 무게를 비교하였다. 또한 대장균이 함유되어있는 대변을 채취하여 살균 성능을 가진 화학제품과 UFB수를 각각 대장균이 포함된 실험원수와 반응시켜 배양하고 검출된 대장균 개체 수에 확인하여 제거효율을 비교분석 하였다. 딸기성장 초기단계의 DO농도 측정결과 DO농도가 6~9ml/L로 높게 유지되고 있음을 확인하였고 딸기 생식단계에서 산소포화도가 일정하게 유지되고 있음에 따라 질산염의 농도가 점차 감소하는 것을 확인하였다. 또한 수확한 열매의 무게는 각각 37g, 19g으로 UFB수를 통해 재배된 딸기가 약 2배 이상 높은 것으로 나타났다. 이와 같은 결과는 수중의 용존산소가 딸기 성장 초기에 뿌리의 발육에 긍정적인 영향을 미치고 질산염을 원활하게 섭취하게 하여 딸기의 성장이 촉진되었고 열매의 무게가 증가하였다고 판단된다. 또한 대장균이 함유된 원수, 원수+화학제품, 원수+UFB를 접종하여 대장균과 반응시켜 배양하여 대장균 개체 수를 확인한 결과, 원수의 경우 약 600개의 대장균의 개체수가 나타났고, 원수+화학제품의 경우 검출된 대장균의 개체 수는 약 300개 정도로 나타났다. 이를 희석한 비율을 계산하여 대장균 개체 수를 나타내면 원수 약 6000개/ml, 원수+화학제품 약 6000개/ml로 비슷하게 나타난다. 반면, 원수+UFB 경우 검출된 대장균의 개체 수는 1개로 희석한 비율을 계산하여 대장균 개체 수를 나타내면 약 20개/ml로 나타난다. 이와 같은 결과를 통해 UFB는 99.9%의 대장균 제거효율을 보였으며, 화학제품은 대장균 제거효율을 보이지 않았다. 따라서 화학제품은 항균기능은 작용하지만 살균기능은 거의 없다고 판단하였고, UFB의 경우 기포가 소멸하면서 발생되는 초고온, 초고압을 형성하여 주변에 존재하는 대장균을 제거하였거나, 기포가 소멸할 때 발생되는 OH 라디칼을 통해 대장균의 세포를 화학적으로 분해시켜 대장균을 제거하였다고 보인다.

  • PDF

Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image (화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가)

  • Kim, Bo-Seok;Shin, Jun-Ho;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Concrete is a representative heterogeneous material and mechanical properties of concrete are influenced by various factors. Due to the fact that pores in concrete affect determining compressive strength of concrete, studies which deal with distribution and magnitudes of pores are very important. That way, studies using picture imaging have been emerged. Studies on mechanical performance evaluation of structural lightweight foamed concrete and FEM analysis based on picture image are inadequate because lightweight foamed concrete has been researched for only non-structural. Therefore, in this study, cement paste with foaming agent to evaluate mechanical performance is made, FEM analysis with picture image is conducted and young's modulus of experiment and analysis are compared. In this study, dosage of foaming agent is determined 7 level to check pore distribution and water-binder ratio is determined 20% to progress research about structural light weight foamed concrete. Weight of unit volume is minimum at 0.8% of foaming agent dosage. However, weight of unit volume is increased over 0.8% of foaming agent dosage because of interconnection with independent pores. For FEM analysis, cement paste is photographed to use image analyzer(HF-MA C01). Consequently, the fact that Young's Modulus of experiment and FEM analysis are same is drawn by using OOF(Object Oriented Finite elements).

Analyses of Overtopping Velocity using Analytical Solution(Ritter's Solution) of Dam-Break Flow (댐 붕괴흐름의 해석해(Ritter의 해)를 이용한 월파유속 분석)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.669-679
    • /
    • 2008
  • The present study examines similarity of behavior between an overtopping wave generated by a plunging wave and a dam-break flow through hydraulic model tests. The dam-break flow has been employed to estimate the overtopping effect on the basis of the dam-break flow's behavior similar to the overtopping. In this study, the overtopping velocity was measured by a modified image technique using bubble and bubble texture images called bubble image velocitmetry. From the measurements, the vertical profiles of horizontal overtopping velocity at cross-sections along the deck were presented and discussed. Maximum velocity and depth-averaged velocity at each cross-section were compared with an analytical solution solving the dam-break flow, Ritter's solution. The initial water depth of importance for the solution was determined from the tested wave condition and the overtopping measurements. The comparison shows that the solution with the initial water depth estimated using the front velocity of the overtopping wave is in good agreements with the measurements.

Measurement of the Void Fraction of Slug and Bubbly Flows Using Three-Ring Impedance Meters (3-ring 임피던스미터를 이용한 슬러그류 및 기포류의 기공률 측정)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • Real slug and bubbly flows were measured using a three-ring impedance meter that can efficiently measure the void fraction of two-phase flows in a tube. First, the fitting curves between the signal from the impedance meters and the void fraction were found. The impedance meter had different fitting curves for slug and bubbly flows that had the same void fraction. An impedance meter should choose one of the two fitting curves according to the flow pattern, and the flow patterns can be recognized using the measured void fraction. The velocities and sizes of the bubbles were calculated using the void fraction curves measured by two impedance meters.