• Title/Summary/Keyword: 기포혼합

Search Result 137, Processing Time 0.026 seconds

A Study on the Economic Analysis of Box Mechanical Behavior Materials Using LCC Techniques (LCC를 고려한 BOX구조물 뒷채움 재료의 경제성 분석에 관한 연구)

  • Lee, Sang-Hee;Kim, Soo-Yong;Park, Young-Min
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • The lightweight bubble mixture soil are lightweight soft ground rear, which is used with the material filling. However, comparing with the general soil, it is not valuably useful from domestic. The utilization of the general soil which initial public corporation holds mainly few. The overlay method of general soil decreasing the number of layers increases according to use research study. From the research which consequently, BOX mechanical behavior materials rear executed LCC analyses the general soil which is a material filling and lightweight bubble mixture soil, discussed two kind alternatives and presents the analysis will be able to support the decision-making which is rational from the economics. The expense, which results from the resultant of lightweight bubble mixture soil maintenance, was fewer and was then analyzed with the fact that, will be able to secure an economical efficiency within 6 years.

  • PDF

Economic Analysis of Box Mechanical Behavior Materials Using LCC Analysis (LCC를 고려한 BOX구조물 뒷채움 재료의 경제성 분석)

  • Park, Young-Min;Kim, Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.40-47
    • /
    • 2009
  • The lightweight bubble mixture soil is used for soft ground rear-filling material by applying reduced weight on structure. However, comparing with the general soil, it is not applied in domestic because of initial phase cost of construction. General soil, which has lower initial phase cost is usually used for rear-filling, but the use of overlay method of general soil is reduced as the number of layers increases. Especially box structure placed in soft ground or the overlay method when gap near pier rear-filling can be replaced with temporary alternative method, however, it can't be a solution to gap by generation of extra weight of thickness of overlaying. Therefore, execute LCC analysis of two alternative-the general and the lightweight bubble mixture soils, which are rear-filling material of box structure- and present economical analysis in order to make resonable decision from the economics. As a result, although the lightweight bubble mixture soil takes higher initial phase cost than the general soil, it has been analyzed to procure economical efficiency by having less cost of maintenance.

Development Study of Porous Concrete in Thermal Conduction rate less than 0.05Kcal/mh${^\circ}C$ (열전도율 0.05Kcal/mh${^\circ}C$이하의 기포콘크리트 개발연구)

  • Kong, Kyoung-Rok;Park, Mi-Jung;Kim, Chang-Soo;Kang, Heon-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.357-358
    • /
    • 2009
  • Expanded vermiculite and Al powder can produce lightweight porous concrete with excellent insulation performance. From the results, we could find out the possibility to develop environmental-friendly interior materials.

  • PDF

Compressive Strength Characteristics of Light-weight Air Foamed Soil Using Dredged Silty Soils (준설 실트질 점토를 이용한 경량기포혼합토의 압축강도 특성)

  • Kim, Donggyu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2017
  • In this research, laboratory tests were carried out to investigate the engineering properties of Light-Weight Air Foamed Soil (LWAS) based on silty clays with the animal foaming agent and cement. LWAS has been used as an embankment material over soft ground for road and side extension of the existing road. In field, unit weight and flow value is measured right after producing in mixing plant in order to control the quality of LWAS, and laboratory tests are carried out to confirm the quality through compressive strength of LWAS as well. In this research, direct estimation of the specification requirement of strength using flow values in field is the main purpose of the study together with other characteristics. From the test results, it can be seen that flow values increase with the initial water content and unit weight increases with the depth due to material segregation. Compared to the upper specimen, lower end of 60 cm specimen shows about 2 times higher compressive strength. Relationship between flow values and normalized factor presented by Yoon & Kim (2004) was presented. With that relationship, compressive strength can be predicted from flow values in field. From the relationship, the normalized factor was calculated. Thereafter calculated compressive strengths according to the flow values were compared to measured strengths in the laboratory. The higher the initial water content of the dredged soil has, the better relationship between predicted and measured shows. Therefore it is necessary to predict the compressive strength in advance through the relationship between the flow value and the normalized factor to reflect it in the design stage.

A Study on Bubbles Generated from Water Plasma for Application of DAF Process

  • Park, Jun-Seok;Yu, Seung-Yeol;Yu, Seung-Min;Hong, Eun-Jeong;Seok, Dong-Chan;Hong, Yong-Cheol;No, Tae-Hyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.232-232
    • /
    • 2011
  • DAF는 기존 침전 공정에 비해 뛰어난 정수 품질과 빠른 처리 시간으로 차세대 정수 공정으로 각광 받고 있다. DAF는 기포 생성 방법에 따라 용존 공기 부상법, 분산 공기 부상법, 진공 부상법, 전해 부상법, 미생물학적 부상법 등이 있다. 이 중 가장 많이 쓰이는 방식은 용존 공기 부상법으로, 과포화 상태의 기체와 액체의 혼합액을 압력을 급격히 감소시켜 기포를 발생 시키는 방법이다. 이 방법은 기포의 발생은 많지만 장비의 크기가 거대하고 시설제조 비용이 많이 드는 단점이 있다. 수중에서 발생되는 플라즈마는 그 구조와 메카니즘에 따라 생성되는 버블의 양을 제어할 수 있음을 확인하였다. 모세관 형태의 전극을 이용한 수중 방전은 전원 공급 장치만 있다면 적은 공간으로도 효과적으로 기포를 생성 할 수 있기 때문에, 수중 방전을 이용하여 기포 발생 후 DAF에 적용 가능한지 알아보고자 한다. DAF공정에서 필요한 요인으로는 기포의 크기, 개수, 성분 물질 등이 있는데, 그 중 가장 핵심은 기포의 크기 이다. 그래서 간단한 전원 장치와 리액터 제작 후 방전에 최적화 된 전극으로 기포를 발생시켜 기포의 크기를 측정하였다. 기포의 크기는 전극의 직경과 방전공간의 비율에 따라 제어가 가능함을 확인하였고 평균 기포의 크기는 약 50 ${\mu}m$로서, DAF에 적용 할 수 있는 크기이다. 일반적으로 기포의 사이즈가 작을수록 입자 제거율이 높은데, 실제 DAF공정에서 사용되는 기포의 사이즈는 80 ${\mu}m$정도 이다. 따라서 개발된 기포 발생장치를 DAF 공정에 응용한다면 높은 효율을 가질 것으로 판단된다.

  • PDF

Relationship between void fraction and mixing in bubble column flow (기포탑 유동에서의 기포분율과 혼합정도의 상관관계)

  • Zahidul, Islam MD;Lee, Jubeom;Park, Hyungmin
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Control of mixing and transport processes are the key areas that can be benefited by understanding the hydrodynamics in gas-liquid two-phase flows. In particular, the enhanced bubble-induced liquid-phase mixing is known to be a function of void fraction distribution, gas phase velocity and so on. To further our insight on the characteristics of the liquid-phase mixing induced by the bubbles, in the present study, we experimentally investigate the mixing performance of a rectangular bubble column while changing the void fraction from 0.006 to 0.075%. A shadowgraphy technique is used to measure the gas-phase properties such as void fraction and size/velocity of bubbles. On the other hand, we use dye visualization with low diffusive buoyant dye to directly measure the level of mixing. Finally, we confirm that the time taken for full mixing scales with the inverse of volume void fraction.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

Numerical Sudy on Bubbling Fluidized Bed Reactor for Fast Pyrolysis of Waste Lignocelluosic Biomass (폐목질계 바이오매스의 급속열분해 기포유동층 반응기에 대한 수치해석적 연구)

  • Lee, Ji Eun;Choi, Hang Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.710-716
    • /
    • 2013
  • New and renewable energy sources have drawn attention because of climate change. Many studies have been carried out in waste-to-energy field. Fast pyrolysis of waste lignocelluosic biomass is one of the waste-to-energy technologies. Bubbling fluidized bed (BFB) reactor is widely used for fast pyrolysis of the biomass. In BFB pyrolyzer, bubble behavior influences on the chemical reaction. Accordingly, in the present study, hydrodynamic characteristics and fast pyrolysis reaction of waste lignocellulosic biomass occurring in a BFB pyrolyzer are scrutinized. The computational fluid dynamics (CFD) simulation of the fast pyrolysis reactor is carried out by using Eulerian-Granular approach. And two-stage semi-global kinetics is applied for modeling the fast pyrolysis reaction of waste lignocellulosic biomass. To summarize, generation and ascendant motion of bubbles in the bed affect particle behavior. Thus biomass particles are well mixed with hot sand and consequent rapid heat transfer occurs from sand to biomass particles. As a result, primary reaction is observed throughout the bed. And reaction rate of tar formation is the highest. Consequently, tar accounts for 66wt.% of the product gas. However, secondary reaction occurs mostly in the freeboard. Therefore, it is considered that bubble behavior and particle motions hardly influences on the secondary reaction.

Effect of Air Entraiment Agent, Neopor-400 on Physical Properties of Fly Ash-Based Concrete (기포재(Neopor-400)가 Fly Ash-Concrete의 물성에 미치는 영향)

  • 임남웅;김정빈;박일두
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.187-193
    • /
    • 1994
  • 일반 콘크리트 (설계강도 $\sigma_{28}=210 kg/\textrm{cm}^2$)에 산업폐기물인 Fly Ash를 혼합하고 기포재 (Air Entrainment Agent) 첨가에 따른 Fly Ash-Concrete의 물성 변화를 시험하였다. Fly Ash-Concrete의 slump를 6, 8, 10cm로 고정시킨후, 각각의 slump 반죽상태에다 기포재, Neopor-400을 25,000cc/$\textrm{m}^3$, 50,000cc/$\textrm{m}^3$, 75,000cc/$\textrm{m}^3$으로 증가시켰다. 이때 기포재 증가에 따른 공기량 변화와 압축강도 $(\sigma_7 과 \sigma_{28})$ 를 측정하였다. 또한 기포재를 첨가한후, 60분과 90분까지 방치하고, 60분후와 90분후의 공기량과 압축강도 $(\sigma_7 과 \sigma_{28})$ 변화를 측정하였다. 시험결과에 의하면, 기포재가 첨가되는 시간에서부터 60분, 90분 동안 방치하면 공기량은 감소된다. 동시에 압축강도는 점진적으로 증가된다. KSF 5405가 요구하는 slump값이 90분 이내에 $12\pm0.5$의 범위에 들어 가기 위해서는 기포재는 50,000cc/$\textrm{m}^3$-75,000cc/$\textrm{m}^3$만큼 첨가되어야 한다. 이때의 7일 압축강도가 170-200kg/$\textrm{cm}^2$이고 28일 압축강도는 215-290kg/$\textrm{cm}^2$이다. 이 값은 설계강도 $\sigma$28=210kg/$\textrm{cm}^2$ 보다 최고 약 40%까지 증가율을 보여 주었다.

  • PDF

Effect of Mixing Time by Mix Truck on the Physical Properties of Lightweight Air-mixed Soil (믹스트럭 내 교반시간이 경량기포혼합토의 물성에 미치는 영향)

  • Kim, Taehyo;Kim, Nayoung;Im, Jongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 2015
  • As the physical and mechanical properties of lightweight air-mixed soil change in the procedure of transportation of mix truck, it is necessary to assure whether the properties during construction satisfy those in design. In this study, variations of properties of mixed soil after transportation by mix truck are proved by field test. Lightweight air-mixed soil used field test the unit weight of $9.0{\pm}1.0kN/m^3$, the flow value of $190{\pm}20mm$ was produced. To analyze variations of properties of mixed soil the unit weight and flow value of the sample before and after transport was measured unconfined compressive strength tests were performed. Mixing time was 19~175 minutes diversified. As the test results, it is known that the density, the flow value and the unconfined compressive strength of lightweight air-mixed soil change by transportation, but these values satisfy the specifications of material of air-mixed soil. After transportation the average value of the unit weight and flow value change in the flow of the $(+)0.10kN/m^3$, 4.8 mm respectively, the average change in the unit weight and the flow value due to the mixing time was constant. And unconfined compressive strength of 28-day specimen increases from 20 to $150kN/m^2$. But, these values do not have some clear relationship with the transportation time within 175 minutes which is longest test time. Consequently, Within 175 minutes the changes of properties by transportation are too small to show some problems in the construction field.