• Title/Summary/Keyword: 기포유동층반응기

Search Result 37, Processing Time 0.027 seconds

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor (가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구)

  • Son, Seong Hye;Seo, Myung Won;Hwang, Byung Wook;Park, Sung Jin;Kim, Jung Hwan;Lee, Do Yeon;Go, Kang Seok;Jeon, Sang Goo;Yoon, Sung Min;Kim, Yong Ku;Kim, Jae Ho;Ryu, Ho Jeong;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.871-877
    • /
    • 2018
  • Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.

Effects of Regeneration Conditions on Sorption Capacity of CO2 Dry Potassium Sorbent During Carbonation (재생반응 조건이 CO2 건식 K-계열 흡수제의 흡수능력에 미치는 영향)

  • Kim, Yunseop;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Rhee, Young Woo;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.333-338
    • /
    • 2015
  • In this study, we investigated carbonation-regeneration and agglomeration characteristics of dry sorbents. Experiment has been proceeded in the batch-type reactor, which is made of quartz: 0.05 m of I.D and 0.8 m in height. The sorbents that is collected at the cyclone of the carbonation reactor of continuous process were used in this study. The reactivity was studied at the various concentrations of water vapor, $N_2$ and $CO_2$ in the fluidizing gas at regeneration reaction. As a result, the reactivity increased as the regeneration temperature increased, the reactivity decreased as the concentration of water vapor increased. The absorption capacity showed the highest value in case of using $N_2$ 100% as regeneration gas. And decreased in order of $H_2O+N_2$, $CO_2$ 100% and $H_2O+CO_2$. The agglomeration characteristics were investigated according to the particle sizes and concentrations of water vapor at carbonation reaction. As a result, the particle with smaller size and higher concentration of water vapor showed the higher agglomeration characteristic.

Hydrodynamic Characteristics of Absorbent and Catalyst for Pre-combustion CO2 Capture (연소 전 이산화탄소 회수를 위한 흡수제 및 촉매의 수력학적 특성)

  • Ryu, Ho-Jung;Yoon, Joo-Young;Lee, Dong-Ho;Shun, Dowon;Park, Jaehyeon;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.437-445
    • /
    • 2013
  • To develop SEWGS (sorption enhanced water gas shift) system using dry $CO_2$ absorbent for pre-combustion $CO_2$ capture, hydrodynamic characteristics of $CO_2$ absorbents were measured and investigated. The minimum fluidization velocity of $CO_2$ absorbent was measured and the effects of the operating conditions were investigated to operate the system at bubbling fluidized bed condition. The minimum fluidization velocity decreased as pressure and temperature increased. Moreover, the minimum fluidization velocity decreased as column diameter increased. The effects of operating conditions on the solid circulation rate were measured and investigated to select appropriate operating conditions for continuous $CO_2$ capture and regeneration. The measured solid circulation rates were ranged between 10 and 65 kg/h and increased as the solid injection velocity, gas velocity in the regeneration reactor, and solid height increased.

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds (기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향)

  • Jo, WooJin;Jeong, SooHwa;Park, SungJin;Choi, YoungTai;Lee, DongHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.783-791
    • /
    • 2015
  • A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier (미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구)

  • Han, Si Woo;Seo, Myung Won;Park, Sung Jin;Son, Seong Hye;Yoon, Sang Jun;Ra, Ho Won;Mun, Tae-Young;Moon, Ji Hong;Yoon, Sung Min;Kim, Jae Ho;Lee, Uen Do;Jeong, Su Hwa;Yang, Chang Won;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.874-882
    • /
    • 2019
  • In this study, the gasification characteristics of four types of unused woody biomass and one waste wood in a lab-scale bubbling fluidized bed gasifier (Diameter: 0.11 m, Height: 0.42 m) were investigated. Effect of equivalence ratio (ER) of 0.15-0.3 and gas velocity of $2.5-5U_0/U_{mf}$ are determined at the constant temperature of $800^{\circ}C$ and fuel feeding rate of 1 kg/h. The silica sand particle having an average particle size of $287{\mu}m$ and olivine with an average particle size of $500{\mu}m$ were used as the bed material, respectively. The average product gas composition of samples is as follows; $H_2$ 3-4 vol.%, CO 15-16 vol.%, $CH_4$ 4 vol.% and $CO_2$ 18-19 vol.% with a lower heating value (LHV) of $1193-1301kcal/Nm^3$ and higher heating value (HHV) of $1262-1377kcal/Nm^3$. In addition, it was found that olivine reduced most of C2 components and increased $H_2$ content compared to silica sand, resulting in cracking reaction of tar. The non-condensable tar decreases by 72% ($1.24{\rightarrow}0.35g/Nm^3$) and the condensable tar decreases by 27% ($4.4{\rightarrow}3.2g/Nm^3$).

Flow Behavior and Mixing Characteristics of Rice Husk/Silica Sand/Rice Husk Ash (왕겨/모래/왕겨 회재의 유동 및 혼합 특성 연구)

  • Kim, Bo Hwa;Seo, Myung Won;Kook, Jin Woo;Choi, Hee Mang;Ra, Ho Won;Yoon, Sang Jun;Mun, Tae Young;Kim, Yong Ku;Lee, Jae Goo;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.533-542
    • /
    • 2016
  • We investigate fluidization characteristics of the mixture of rice husk, silica sand and rice husk ash as a preliminary study for valuable utilization of rice husk ash obtained from gasification of rice husk in a fluidized bed reactor. As experiment valuables, the blending ratio of rice husk and sand (rice husk: sand) is selected as 5:95, 10:90, 20:80 and 30:70 on a volume base. Rice husk ash was added with 6 vol% of rice husk for each experiment and air velocity to the reactor was 0~0.63 m/s. In both rice husk/sand and rice husk/sand/ash mixture, the minimum fluidization velocity (Umf) is observed as 0.19~0.21 m/s at feeding of 0~10 vol.% of rice husk and 0.30 m/s at feeding of 20 vol.% of rice husk. With increasing the amount of rice husk up to 30 vol.%, $U_{mf}$ can not measure due to segregation behavior. The mixing index for each experiment is determined using mixing index equation proposed by Brereton and Grace. The mixing index of the mixture of rice husk/sand and rice husk/sand/ash was 0.8~1 and 0.88~1, respectively. The optimum fluidization condition was found for the good mixing and separation of rice husk ash.

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.