• Title/Summary/Keyword: 기포소음

Search Result 36, Processing Time 0.018 seconds

A study on the estimation of bubble noise generated by orifice type bubble generators (오리피스형 공기분사기 생성 기포소음 추정 연구)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Kim, In kang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.255-267
    • /
    • 2022
  • In this paper, noise characteristics of bubbles created by an orifice-type bubble generator are studied. In order to understand the overall bubble noise characteristics, the bubble noise spectra proposed by Strasberg and Blake, respectively, are examined, and an air injection experiment was performed in the large cavitation tunnel of KRISO to measure the bubble noise. The experiments were performed under a quiescent condition and flow conditions using 5 types of air bubble generator. From the measurement results, the characteristics of the bubble noise spectrum according to the experimental conditions are observed, and the effect of each parameter on bubble noise is analyzed by regression analysis. Finally, empirical models based on the regression analysis for bubble noise are presented, and it is confirmed that the estimated bubble noise is in good agreement with the measured results.

Collective Oscillations of a Bubble Cloud as a Source of Underwater Ambient Noise in the Ocean (해양에서의 수중소음원으로서 기포군의 집단운동)

  • Yoon, S.W.;Park, K.J.;Crum, L.A.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.47-51
    • /
    • 1991
  • it is well observed in the ocean that the surface disturbances due to rain, wind and breaking waves generate bubble clouds several meters deep from the water surfaces. Thses kinds of bubble clouds can work as a physical mechanism to produce underwater ambient noise. In the laboratory experiment observing the noise generated from a bubble cloud we showed a role of individual bubbles in collective oscillations of a bubble cloud. The experimental data agree very well with the theoretical predictions. These results confirm that the collective oscillations of a bubble cloud is one of the more likely mechanisms for an ocean ambient noise source around several hundred hertz.

  • PDF

Prediction of time-series underwater noise data using long short term memory model (Long short term memory 모델을 이용한 시계열 수중 소음 데이터 예측)

  • Hyesun Lee;Wooyoung Hong;Kookhyun Kim;Keunhwa Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, a time series machine learning model, Long Short Term Memory (LSTM), is applied into the bubble flow noise data and the underwater projectile launch noise data to predict missing values of time-series underwater noise data. The former is mixed with bubble noise, flow noise, and fluid-induced interaction noise measured in a pipe and can be classified into three types. The latter is the noise generated when an underwater projectile is ejected from a launch tube and has a characteristic of instantaenous noise. For such types of noise, a data-driven model can be more useful than an analytical model. We constructed an LSTM model with given data and evaluated the model's performance based on the number of hidden units, the number of input sequences, and the decimation factor of signal. It is shown that the optimal LSTM model works well for new data of the same type.

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate Considering the Noise of Multi-bubbles (다중기포 발생소음을 고려한 무한평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Heo, Bo-Hyun;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1222-1230
    • /
    • 2009
  • A theoretical model was developed to compute the effect of a bubble layer in reducing the radiation noise generated by a force applied on an infinite flat plate considering the noise of multi-bubbles. Using the model, the effectiveness of a bubble layer in reducing the structure-borne noise of the plate was evaluated to consider various parameters such as the source noise levels, the thickness of bubble layers, the volume fractions and the frequency characteristics of bubbly fluids. Considering the noise of multi-bubbles, the actual reduction effect of radiation noise using a bubble layer was expected in cases of high source levels, high volume fractions of bubbles and large thickness of the bubble layer above the resonance frequency of the bubble layer. Accordingly, it is recommended that the thickness of a bubble layer, the source noise level and the characteristics of bubbly fluids should be optimized cautiously to maximize noise reduction effects.

Measurement of Cavitation Noise of a Hydrofoil and Prediction of Cavity Bubble Behavior (수중익의 캐비테이션 소음 계측 및 캐비티 기포 거동 해석)

  • Jong-Woo Ahn;Kwan-Hyoung Kang;In-Haeng Song;Kyung-Youl Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.40-47
    • /
    • 2000
  • The cavitation noise of a hydrofoil is measured in a cavitation tunnel. It is exhibited that the noise level sharply increases with the inception of cavitation and increase with the decrease of the cavitation number until a moderate cavitation number. Below the cavitation number, the trend is reversed, which may be resulted from the interference effect between cavities. The trajectory of bubble is predicted by using the Lagrangian method. Meanwhile the size of the bubble is predicted based on the Kirkwood-Bethe approximation. The predicted results for the bubble size are compared with the experimental results. It is shown that the numerical method predicts the time history of cavities fairly well.

  • PDF

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate (무한 평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.168-176
    • /
    • 2007
  • The mixture sound speed in bubbly fluids is highly dispersive due to differences of the density and compressibility between bubbles and fluids. The dispersion range in bubbly fluids expands to a higher frequency than the resonance frequency of an air bubble. A theoretical model was developed to compute the reduction of radiation noise that is generated by a force applied on an infinite flat plate using a bubble layer as a compliant baffle. For evaluating the effectiveness of a bubble layer in reducing the structure-borne noise of an infinite elastic plate, the noise reduction levels for various parameters such as the thickness of bubble layers, the volume fractions and the distribution types of bubbly fluids are calculated numerically. The noise reduction effect of an air bubble layer on an infinite flat plate is considerable level and similar to the tendency of dispersion of bubbly fluids. It is recommended that the thickness of a bubble layer should be increased with keeping an appropriate volume fraction of an air bubble for the most effective reduction of the radiation noise.

Acoustic insertion loss by a bubble layer for the application to air bubble curtain and air masker (기포층 음향 삽입손실 연구: 기포커튼과 에어마스커)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.227-236
    • /
    • 2020
  • This paper derives the insertion loss for the bubble layer of an air bubble curtain and an air masker which are used to reduce ocean anthropogenic noise such as the piling noise and the ship noise. The air bubble curtain is considered as a 'fluid-air bubble layer-fluid' model and the environment for the air masker is simplified as an 'vacuum-thin plate-fluid-air bubble layer-fluid' model. The air bubble layer in each model is assumed as the effective medium which has the complex wavenumber and the complex impedance corresponding to the bubble population distribution. The numerical simulations are performed to examine the insertion loss depending on the bubble population, the void fraction, and the thickness of the layer.

Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model (Reynolds-averaged Navier-Stokes 해석과 기포동역학 모델을 이용한 날개 끝 와류 공동 소음의 수치적 고찰)

  • Ku, Garam;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the Eulerian/Lagrangian one-way coupling method is proposed to predict flow noise due to Blade-Tip Vortex Cavitation (BTVC). The proposed method consists of four sequential steps: flow field simulation using Computational Fluid Dynamics (CFD) techniques, reconstruction of wing-tip vortex using vortex model, generation of BTVC using bubble dynamics model and acoustic wave prediction using the acoustic analogy. Because the CFD prediction of tip vortex structure generally suffers from severe under-prediction of its strength along the steamwise direction due to the intrinsic numerical damping of CFD schemes and excessive turbulence intensity, the wing-tip vortex along the freestream direction is regenerated by using the vortex modeling. Then, the bubble dynamics model based on the Rayleigh-Plesset equation was employed to simulate the generation and variation of BTVC. Finally, the flow noise due to BTVC is predicted by modeling each of spherical bubbles as a monople source whose strength is proportional to the rate of time-variation of bubble volume. The validity of the proposed numerical methods is confirmed by comparing the predicted results with the measured data.

A study on the estimation of wind noise level using the measured wind-speed data in the coastal area of the East Sea (동해 연안에서 관측된 풍속자료를 이용한 바람소음준위 추정 연구)

  • Park, Jisung;Kang, Donghyug;Kim, Mira;Cho, Sungho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.378-386
    • /
    • 2019
  • Unlike ship noise that radiates from moving ships, wind noise is caused by breaking waves as a result of the interaction between the wind and the sea surface. In this paper, WNL (Wind Noise Level) was modeled by considering the noise source of the wind as the bubble cloud generated by the breaking waves. In the modeling, SL( Source Level) of the wind noise was calculated using the wind-speed data measured from the weather buoy operated in the coastal area of the East Sea. At the same time as observing the wind speed, NL (Noise Level) was continuously measured using a self-recording hydrophone deployed near the weather buoy. The modeled WNL according to the wind speed and the measured NL removing the shipping noise from the acoustic raw data were compared in the low-frequency band. The overall trends between the modeled WNL and the measured NL were similar to each other. Therefore, it was confirmed that it is possible to model the WNL in the shallow water considering the SL and distribution depth of bubble cloud caused by the wind.

Characteristics of Underwater Air-Bubble Curtain Generating by the Compressed Air (압축공기에 의한 수중 기포막의 특성)

  • 김재오
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.381-385
    • /
    • 1996
  • This paper described to experiment and analyze for the characteristic of underwater airbubble curtain which was generated by the air - bubble curtain generating unit consisted with air compressor (290l/min x 1.5Kw) and air tank(10kgf/$cm^2$) in order to provide foundation source for guiding fish schools. To layout the air - bubble curtain was made vinyl hoses( $cm^2$ emitting air - pressure, the wider hole interval of hose drilled the higher air - bubble curtain could be formed, and then the horizontal length of air - bubble curtain could be prolonged 45% according to be inclined vertical angle of air - bubble generating hose.

  • PDF