• Title/Summary/Keyword: 기체채취법

Search Result 9, Processing Time 0.026 seconds

Radial Variation of Sound Absorption Capability in the Cross Sectional Surface of Yellow Poplar Wood (백합나무 횡단면 흡음성능의 방사방향 변이)

  • Kang, Chun-Won;Lee, Youn-Hun;Kang, Ho-Yang;Kang, Wook;Xu, Huiran;Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Radial variation of sound absorption capability and air permeability of yellow poplar (Liriodendron tulipifera) wood in cross sectional surface and effect of steam explosion treatment were estimated by the two microphone transfer function method and the capillary flow porometry, respectively. The sound absorption coefficients of steam explosion treated wood was higher than those of control wood and these values increased with frequency. Abundant and big vessel may behave as sound absorbing pore observed on the cross sectional surface of yellow poplar wood. The sound absorption coefficients and air permeability of sapwood were higher than those of heartwood for Liriodendron tulipifera.

Rapid Measurement of VOC Using an Analysis of Soil-Gas (Soil-Gas의 분석을 이용한 휘발성 유기화합물 오염도 신속측정)

  • 김희경;조성용;황경엽
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.3-9
    • /
    • 1998
  • This paper presents soil-gas surveying technique to delineate an area contaminated with volatile organic compounds, which are common solvents and constituents of gasoline. The sampling method of soil-gas surveying is 1) grab sampling, which actively takes sample using a pump, or 2) passive sampling, which takes sample through diffusion in a trap filled with absorbent. The grab sampling shows the level of contamination at a certain location at a certain time, while the passive sampling shows the change in the contamination at a certain location. The analysis of soil gas can be performed with 1) a small portable detectors such as PID (photoionization detector) or FID (flame-ionization detector) to measure the total hydrocarbon in the soil gas, 2) a gas detector tube, which is filled with indicator reagents and changes its color with concentrations of the gas of interest, or 3) a portable GC (gas chromatograph), which can analyze different compounds simultaneously. The soil-gas surveying technique is a much less expensive method to investigate area contaminated volatile organic compounds and thus can be used as a screening tool to identify an area, which needs to be further investigated.

  • PDF

Determination of Phthalates Compounds in the Ambient Atmosphere (I) - Evaluation of a Measurement Method and its Application to a Field Study - (환경대기 중 프탈레이트 화합물의 농도 측정 (I) - 측정방법 평가와 현장 적용 -)

  • Hwang, Yoon-Jung;Park, Young-Hwa;Seo, Young-Kyo;Seo, Gwang-Kyo;Baek, Sung-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.443-454
    • /
    • 2010
  • Phthalate compounds are widely used as plasticizers in polyvinyl chlororide (PVC) resins and other industrial consumer products, and some of them are known to be endocrine disruptors. In Korea, a number of studies have been carried out for the measurement of phthalates in consumer products and drinking water. However, no data are available for those compounds in the ambient air where the general public are routinely exposed. In this study, we evaluated sampling and analytical methods for the determination of phthalates in the ambient atmosphere. A wide range of phthalates compounds were included in the target analytes, which are dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP). Most of samples were collected using a high volume sampler with a PUF/XAD-2 column/quartz fiber filter and then analyzed by GC/MS. Some of samples were simultaneously collected on XAD-2 using a low-volume sampler, together with high-volume samples. The analytical method applied in this study showed good repeatability and linearity. Quantitative detection limits were estimated from 0.60 to 17.84 ng/$m^3$ in air, depending on individual compounds. The field measurements were carried out at 3 sites located in Sihwa- Banwall industrial areas and a suburban area from January 2007 to November 2007. From the field experiments, DEHP, DMP and DBP appeared to be the most abundant compounds in the ambient air. It was also found that DMP, DEP and DBP were mainly distributed in the vapor phase, while BBP, DEHP and DOP were predominantly associated with the particulate phase. The concentrations of DEHP and DMP in the industrial areas ranged from 45.7 to 1,012.7 ng/$m^3$ and from 7.7 to 375.1 ng/$m^3$, respectively. Overall, the high-volume sampling method was demonstrated to be superior to the low-volume method for the determination of phthalates in the ambient atmosphere.

레이져 응용 계측에 관하여

  • 신현동
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.14-19
    • /
    • 1984
  • 종래에 많이 사용된 각양의 계측 방법을 일일이 설명하는 것은 본 해설의 목적이 아니기 때문에 개략적으로 분류하여 설명하면 다음과 같다. 1) 시간 평균유속은 주로 프로브(probe)를 경유하여 동압과 정압의 측정에 의하여 수행되어 왔다. 연소반응이 있으면 밀도의 변화가 있게 되는데 밀도는 후술하는 농도의 계측과 온도의 계측에 의하여 정해져 동압과 정압으로부터 유속으로 변환된다. 시간분해능이 높은 비접촉식(직접 프 로브를 측정부에 삽입하지 않는 방법) 유속측정이 가능한 방법으로는 레이저 도플러 유속계 (Laser Doppler Velocimetry, 이하 LDV로 표현)를 들 수 있다. LDV는 압력측정에 의한 유속 산출법에서와 같은 온도 및 농도 등의 부수적인 계측이 필요없이, 직접 유속을 검출할 수 있으며 또한 검정이 필요없는 절대유속 측정이 가능하며 현재 연소반응이 있는 흐름에 대한 대부분의 연구에 적용되고 있는 실정이다. 2) 시간평균 화학종 농도측정에 가장 많이 쓰이는 방법은, 연소가스를 채취하여 가스 크로마토 그라프(Gas Chromatograph)로 분석하는 것을 들 수 있다. 한편, 시간 분해능이 높은 화학종 농 도의 계측은 레이저를 사용하여 각 화학종의 발광, 산란 및 흡수성을 이용, 측정한다. 3) 온도측정은 대부분 열전대를 사용하고 있다. 그러나 이 방법은 직접 프로브를 삽입해야 하므로 사용한계의 범위가 지극히 좁으며, 연소반응이 일어나므로 프로브 자체의 촉매반응 및 복사 열전달에 의한 보정 등이 사용상 큰 문제로 제기된다. 그러나 최근 레이저 이용기술의 발달로 (2)항에서의 농도 계측과 같이 반응기체의 온도 및 성분의 동시측정이 가능한 방법도 점차 현 실화 되어가고 있다. 그 대표적인 예로 CARS법(Coherent Anti-Stokes Raman Spectroscopy)을 들 수 있다. 이상으로부터 연소반응이 일어나는 흐름에서의 각종 계측에서는, 비접촉 측정의 가능성과 시간 공간 분해능의 특징으로 미루어 앞으로는 레이저를 이용한 계측 방법이 그 주류를 이룰 것으로 사료된다. 우선 본 해설은 기체의 온도 및 농도의 광학적 측정방법중 Raman산란광 검출법에 대하여 실제로 측정하는 입장에서 간단히 소개한다.

  • PDF

Estimation of Hydrocarbon Oxidation by Measuring He Concentrations in an SI Engine Exhaust Port (프로판 엔진의 배기 포트에서 탄화수소 산화율 추정)

  • Yi, Hyung-Seung;Park, Jong-Bum;Min, Kyoung-Doug;Kim, Eung-Seo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.660-667
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, concentrations of individual HC species were measured in exhaust process, the degree of oxidation were obtained. Using a solenoid-driven fast sampling system on single-cylinder research engine fueled with 94% propane, the profiles of unburned hydrocarbons (HCs) and non-fuel HCs with a propane fueled engine were obtained from several locations in the exhaust port during the exhaust process. The sampled gases were analyzed using a gas chromatography of HC species with 4 or lesser carbon atoms. The change of total HC concentration and HC fractions of major components through the exhaust port were discussed. The results showed that non-uniform distribution of HC concentration existed around the exhaust valve and changed with time, and that the exhaust gas exhibited nearly uniform concentration profile at port exit, which was due to mixing and oxidation. Also it could be known that bulk gas with relatively high HC concentration came out through the bottom of the exhaust valve. To estimate the mass-based degree of HC oxidation in the exhaust port from measured HC concentrations, a 3-zone diagnostic cycle simulation and plug flow modeling were used. The degree of oxidation ranged between 26 % and 36 % corresponding to the engine operation conditions.

원자력발전소 1차계통 탈염기 제염계수 특성 분석

  • 성기방;강덕원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.387-391
    • /
    • 1997
  • 냉각재중의 방사능을 띤 성분 중에는 이온교환기에서 제거가 가능한 이온성분과 함께 필터에 의해서 주로 제거되는 입자성 물질로 존재한다. 운전중의 냉각재내 방사성 부식생성물의 물리적 조성 분포 측정 결과에 따르면 90%이상이 0.45$mu extrm{m}$필터에 의해 제거되는 입자성 물질로 구성되어 있다. 이로 인해 새수지 충전후 얼마 사용하지 않은 탈염기의 제염계수가 탈염기에서 완벽한 제거가 어려운 입자성 부식생성물로 인해 10이하를 나타낼 수 있다. 1차계통에 쓰이는 수지의 성능검사를 위해 사용하고 있는 현재의 제염계수 측정법은 다음과 같은 두가지 이유로 완벽하지 않음을 알 수 있다. 첫째, 냉각재중의 방사능을 띤 성분중에는 이온교환기에서 제거가 가능한 이온성분과 함께 필터에 의해 제거되는 입자성 물질도 함께 존재하므로 탈염기의 제염계수 측정 절차는 입자성 물질을 배제한 후 측정해야 하며, 특히 수치 교체를 결정하기 위한 제염계수 측정시에는 여과된 여액으로 방사능 농도를 측정하는 것이 바람직하다. 둘째 운전중인 냉각재의 시료중에는 핵분열 수율이 높고 핵연료봉 손상부위로 유출이 용이한 불활성 기체핵종들이 많이 존재하며, 탈염기 후단에서 채취한 시료중에도 많이 존재하고, 시료 이송과 방사능 측정동안의 짧은 시간동안에도 계속 붕괴반응함으로서 새로 생긴 핵종으로 인해 마치 탈염기의 제거능이 낮은 것으로 오판될 수 있다. 이러한 측정 오차인자를 고려하여야 1차계통 탈염기의 교환능력을 정확히 판정할 수 있다.

  • PDF

Analysis of the Organic Matter Content for Soil Samples Taken at the New Points of Korea Soil Quality Monitoring Network (토양측정망 확대 지점의 토양 유기물 함량 연구)

  • Lee, Sojin;Kim, Jinjoo;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.641-646
    • /
    • 2016
  • Soil organic matter (SOM) is an important soil component releasing nutrients to the plants and reducing risks of soil contamination to the human and ecosystem. Much attention has been recently paid to SOM investigation and management because SOM holds the most of carbon in the earth and sequestrate carbon as a sink tank. The first objective of the study was to investigate SOM of 495 soil samples taken at the Korea Soil Quality Monitoring Network. Soil samples were collected from 16 regions and 8 land use types. The second objective of the study was to find a relationship between the Tyurin method and loss-on-ignition (LOI) method for SOM. The means of SOM by Tyurin and LOI methods were 1.90 and 2.92 % (w/w), respectively. Land uses such as forest, religious area and park where organic matters continuously supply to normally showed higher SOMs than residential and school areas having sandy soils. A regression equation of the relationship between Tyurin and LOI methods was y(Tyurin) = 0.6257x(LOI) + 0.0602 (P-value < 0.001). The coefficient of determination was $R^2=0.749$, relatively linearly related. Although LOI may result in higher SOMs than the Tyurin method, LOI may be a preference for the SOM investigation if various kinds of land uses and many soil samples should be measured.

Separation for the Determination of $^{59/63}Ni$ in Radioactive Wastes (방사성 폐기물 내 $^{59/63}Ni$ 정량을 위한 분리)

  • Lee, Chang-Heon;Jung, Kie-Chul;Choi, Kwang-Soon;Jee, Kwang-Young;Kim, Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.309-317
    • /
    • 2005
  • A study on the separation of $^{99}Tc,\;^{94}Nb,\;^{55}Fe,\;^{90}Sr\;and\;^{59/63}Ni$ in various radioactive wastes discharged from nuclear power plants has been performed for a use in their quantification which is indispensible for the evaluation of the radionuclide inventory Ni was recovered along with Ca, Mg, Al, Cr, Ti, Mn, Ce, Na, K, and Cu through the sequential separation procedure of Re(as a surrogate of $^{99}Tc$), Nb, Fe and Sr by anion exchange and Sr-Spec extraction chromatography. In this research, chemical separation of Ni from the co-existing elements was investigated by cation exchange and Ni-Spec extraction chromatography. Precipitation behaviour of Ni and the co-existing elements with dimethylglyoxime(DMG) was investigated in ammonium $citrate/ethanol-H_2O$ and tartaric $acid/acetone-H_2O$ in order to purify separated Ni fractions and to prepare $^{59/63}Ni$ source for the radioactivity measurement using a gas proportional counter. Recovery of Ni separated through ion exchange chromatographic separation procedure was $92.1\%$ with relative standard deviation of $0.9\%$. In addition, recovery of Ni with DMG in the tartaric $acid/acetone-H_2O$ was $85.6\%$ with relative standard deviation of $1.9\%$.

  • PDF

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.