• Title/Summary/Keyword: 기체연료

Search Result 360, Processing Time 0.023 seconds

A Kinetic Study of Steam Gasification of Woodchip, Sawdust and Lignite (나무칩, 톱밥 바이오매스와 갈탄의 수증기 가스화반응 특성 연구)

  • Kim, Kyungwook;Bungay, Vergel C.;Song, Byungho;Choi, Youngtai;Lee, Jeungwoo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.506-512
    • /
    • 2013
  • Biomass and low-grade coals are known to be better potential sources of energy compared to crude oil and natural gas since these materials are readily available and found to have large reserves, respectively. Gasification of these carbonaceous materials produced syngas for chemical synthesis and power generation. Woodchip, sawdust and lignite were gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information. The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (20~90 kPa) on the gasification rate were investigated. The three different types of gas-solid reaction models were applied to the experimental data to predict the behavior of the gasification reactions. The modified volumetric model predicted the conversion data well, thus the model was used to evaluate kinetic parameters in this study. The observed activation energy of biomass, sawdust and lignite gasification reactions were found to be in reasonable range and their rank was found to be sawdust > woodchip > lignite. The expression of apparent reaction rates for steam gasification of the three solids was proposed to provide basic information on the design of coal gasification processes.

Preparation of Asymmetric PES Hollow Fiber Gas Separation Membranes and Their $CO_2/CH_4$ Separation Properties (비대칭구조의 폴리이서설폰 기체분리용 중공사막의 제조 및 이를 이용한 $CO_2/CH_4$ 분리특성)

  • Park, Sung-Ryul;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • Huge amount of $CH_4$ mixtures has been emitted from landfills and organic wastes via anaerobic digestion. The recovery of high purity $CH_4$ from these gases has two merits: reduction of green house gases and production of renewable fuels. Membrane technology based on polymeric materials can be used in this application. In this study, asymmetric gas separation hollow fiber membranes were fabricated to develop the membrane-based bio-gas purification process. Polyethersulfone (PES) was chosen as a polymer materials because of high $CO_2$ permeability of 3.4 barrer and $CO_2/CH_4$ selectivity of 50[1]. Acetone was used as a non-solvent additive because of its unique swelling power for PES and highly volatile character. The prepared PES hollow fiber showed excellent separation properties: 36 GPU of $CO_2$ permeance and 46 of $CO_2/CH_4$ selectivity at optimized preparation conditions: 9wt% acetone content, 10cm air-gap and 4wt% PDMS coating processes. With the PES hollow fiber membranes developed, mixed $CO_2/CH_4$ test was done by changing various operating conditions such as pressures and feed compositions to meet the highest recovery of CH4 with 95% purity. High $CH_4$ recovery of 58 wt% was observed at 10 atm feed pressure for the 50 vol% of $CO_2$ in $CO_2/CH_4$ mixture.

The Numerical Study on Effect of the Droplet Sizes on Internal Mass Transfer in the Spray Type Scrubber (분무형 스크러버에 내에서 액적크기에 따른 물질전달에 관한 전산해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.19-32
    • /
    • 2019
  • As regional air pollution gets worse by the sulfur oxides emitted from various types of vessels passing through the many countries, the International Maritime Organization establishes the emission control areas and regulates sulfur dioxide in those areas. In order to satisfy these regional regulations, the fuel selection method and the exhaust gas post-treatment device are applied to the ships. Due to the economic reasons, the post-treatment method of exhaust gas for reducing the amount of sulfur oxides discharged is mainly preferred. The scrubber which is dominantly used in the ships are the spray type system where the sprayed liquid drops used for capturing the soluble sulfur dioxides in the exhaust gas. The performance of the spray type system depends on the size distribution of the sprayed droplets. In order to evaluate this performance, we designed counterflow type scrubber and cyclone scrubber and evaluated the desulfurization efficiency and the amount of droplet evaporation according to the size of each droplet by using computational fluid dynamics. The Eulerian-Eulerian analysis method was used because the scrubber had a gas-liquid two-phase flow inside the scrubber. When the diameter of the droplet was $100{\mu}m$, $300{\mu}m$, $500{\mu}m$ and $700{\mu}m$. As a result, both of scrubbers showed high desulfurization efficiency and low evaporation amount at $500{\mu}m$ and $700{\mu}m$.

Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube (튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구)

  • Park, Juwon;Kim, Daehae;Park, Dae Geun;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.915-921
    • /
    • 2020
  • Thermoacoustic instability caused by air conditioning in a combustion chamber has emerged as a problem that must be solved to establish a stable combustion system. Thermoacoustic instability is largely divided into primary and secondary acoustic instability. In this study, an experimental study of the effects of heat losses was conducted to investigate the mechanism of secondary acoustic instability. To generate the secondary acoustic instability, a quarter-wavelength resonator with one open end and one closed end was used, and the inside of the resonator was filled with premixed gases. Subsequently, secondary acoustic instability with downward-propagating flames could be realized via thermal expansion on the burnt side. To control heat losses qualitatively, an additional co-axial tube was installed in the resonator with air or nitrogen supply. Therefore, additional diffusion flames can be formed at the top of the resonator depending on the injection of the oxidizer into the co-axial tube when rich premixed flames are used. Consequently, secondary acoustic instability could not be achieved by increasing heat losses to the ambient when the additional diffusion flame was not formed, and the opposite result was obtained with the additional diffusion flame.

Study on Enhancement of Ammonia Generation for Effective Collision Frequency (유효충돌빈도를 고려한 암모니아 생성 증대기법 연구)

  • Sejin Kim;Yongseok CHoi;Hyunchul Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • Research, such as developing alternative energy in the transportation field, including aviation, is being actively conducted to solve the issue of current climate change. Interest in ammonia fuel as a carbon free energy (CFE) source is increasing due to the ease of liquefaction and transportation and similarity in energy density to that of methanol. However, explosiveness and toxicity of ammonia make it difficult to handle. Therefore, in this study, stable ammonia production was attempted using relatively easy-to-handle urea water solution (UWS). High temperature steam was used to promote the hydrolysis of ammonia. In order to determine the causes for ammonia production below the theoretical equivalent ratio, it was suggested that there were not enough collisions to promote the hydrolysis based on the kinetic theory of gases. The hydrolysis of unreacted isocyanic acid (HNCO) was tested according to the change in water supply. As a result, an increased amount of ammonia produced was confirmed. The increased amount of ammonia produced in a certain section was dependent on the steam temperature and the flow rate of water supplied.

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.

Short-term Variability of Carbon Dioxide within and across the Korean Peninsula: Case Study during 1995-1997 (이산화탄소의 단주기적 농도변화 특성)

  • Song, Ki-Bum;Youn, Yong-Hoon;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.623-634
    • /
    • 2000
  • This study was conducted to analyze the patterns associated with the short-term variability of CO$_2$ concentrations over 24-h scale within and across the Korean Peninsula. In the course of our study, we compared the data sets obtained from Moo-Ahn (MAN) station located in the far western coastal area of Korea with those determined from major background observatory stations around the world from the periods of Aug. 1995 to Dec. 1997. The mean CO$_2$ concentration of the MAN area for the whole study periods, when computed using the daily mean values, was found out to be 374.5${\pm}$6.6 ppm (N=884); seasonal mean values were found out to be 378${\pm}$5.2 (spring: N=181), 372${\pm}$10.2 (summer: N =210), 372${\pm}$7.2 (fall: N=243), and 376${\pm}$5.4 ppm (winter: N=206). When the data from MAN was compared with those of major background stations, the effects of both daily and seasonal components appear to vary distinctively across different stations. Those effects are expected to reflect the mixed effects of various factors which include: seasonal pollution patterns, weather conditions, vegetation, and so forth. Based upon this comparative analysis, we suspect that the MAN area is under the strong influence of anthropogenic source processes relative to all the other stations under consideration. If that is not the case, the existence of enhanced CO$_2$ level may be rather ubiquitous phenomena in Korea. More detailed inspection of CO$_2$ behavior from various respects is strongly desired in the future.

  • PDF

A Study on the Pollution of Polycyclic Aromatic Hydrocarbons (PAHs) In the Column Sediments around Gwangyang Bay (광양만 주변해역 주상퇴적물에서의 다환방향족탄화수소류(PAHs)의 오염에 관한 연구)

  • You, Young-Seck;Cho, Chon-Rae;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.257-266
    • /
    • 2008
  • PAHs are of mainly anthropogenic origin from urban runoff, oil spill and combustion of fossil fuels. Some PAHs are potentially carcinogenic and mutagenic to aquatic organisms. This study was carried out to survey the contamination of PAHs in the column sediments around Gwangyang bay. Yeosu petrochemical industrial complex, POSCO(Pohang steel compony) and Gwangyang container harbor are located near the bay. The column sediments were collected at 4 stations(A, B, C and D) and fractionated at intervals of two-centimeter depth on July 29, 1999. PAHs in colmn sediment samples were extracted in soxhlet extractor and were identified and quantified by GC-MS. PAHs compounds were analyzed and found to be 13 species. Total PAHs concentrations in the column sediments ranged from 275.04 to 2,838.64${\mu}g/kg$ dry wt. Naphthalene had the highest concentration in the range of 40.60 to 2,294.06${\mu}g/kg$ dry wt. and Anthracene had the lowest concentration in the range of 2.63 to 11.30${\mu}g/kg$ dry wt. The correlation coefficients between individual PAHs and total PAHs in the column sediments were relatively higher in the low molecular compounds such as Naphthalene, Acenaphthylene and Phenanthrene. The relationship between the P/A(Phenanthrene/Anthracene)ratio and F/P(Fluoranthene/Pyrene)ratio showed that P/A ratio was generally above 10 and F/P ratio was above 1 in all sediment samples. These data indicate that PAHs in the column sediments around Gwangyang bay seem to be of both pyrolytic and petrogenic origin The values of PAHs in the column sediments were lower than the biological effect guidelines.

  • PDF

A Study on the Pollution of Polycyclic Aromatic Hydrocarbons(PAHs) in the Surface Sediments Around Gwangyang Bay (광양만 주변해역 표층퇴적물에서의 다환방향족탄화수소류(PAHs)의 오염에 관한 연구)

  • You, Young-Seok;Choi, Young-Chan;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.9-20
    • /
    • 2007
  • PAHs(Polycyclic Aromatic Hydrocarbons) are widespread contaminants in the marine environment. They are of mainly anthropogenic origin from urban runoff, oil spill and combustion of fossil fuels. Some PAHs are potentially carcinogenic and mutagenic to aquatic organism The contamination of PAHs in the coastal environments has not been well known yet in Korea. This study was carried out to survey the contamination of PAHs in sediments around Gwangyang bay. The Yeosu petrochemical industrial complex, POSCO(Pohang steel company) and Gwangyang container harbor are located around the bay. PAHs in sediment samples were extracted in soxhlet extractor and were identified and quantified by GC-MS(Gas Chromatography-Mass Spectrometry) TOC(Total Organic carbon) and textural parameters in sediment samples were also analyzed 13 species of PAHs were detected at all of the surface sediments. Total PAHs concentrations in the surface sediments ranged from 171.40 to $1013.54{\mu}g/kg$ dry wt.. In most of the surface sediments, Naphthalene was the highest in the range of 14.08 to $691.39{\mu}g/kg$ dry wt. and Anthracene was the lowest in the range of 0.49 to $22.66{\mu}g/kg$ dry wt.. The correlation coefficients between individual PAHs and Total PAHs in the surface sediments were relatively higher in the low molecular compounds such as Naphthalene and Phenanthrene. In the relationship of the P/A(Phenanthrene/Anthracene) ratio and F/P(Fluoranthene/Pyrene) ratio, P/A ratio was generally above 10 and F/P ratio was shown to be above 1 in all sediment samples. These data indicate that PAHs in sediments around Gwangyang bay seem to be of both pyrolytic and petrogenic origin. Total PAHs in the surface sediments were correlated with TOC and textural parameters. The values of PAHs in the surface and core sediments were lower than the biological effect guidelines.

  • PDF

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.