• Title/Summary/Keyword: 기체메탄

Search Result 150, Processing Time 0.029 seconds

Simulation on Recovery of Methane Greenhouse Gas from Biogas Using 3 Stage Membrane Modules (바이오가스로부터 온실가스 메탄 회수를 위한 3단 분리막 공정 모사)

  • Lee, Yongtaek
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.243-251
    • /
    • 2018
  • Methane is one of the important greenhouse gases and methane is the major component of the biogas. A multiple stage membrane process was developed and analysed with the numerical analysis so that the mole fraction of methane in the final product could be kept higher than 0.95 and simultaneously the recovery of methane was also maintained higher than 99% from the biogas using 3 polysulfone hollow fiber membrane modules which were properly connected. As the feed pressure of the biogas, the mole fraction of methane in the biogas and the membrane area in the membrane module are increased, the methane mole fraction of the final product are found to be increased. However, a proper membrane area in the module should be carefully selected in order to achieve the satisfactory goal of 0.95 mole fraction of methane and 99% recovery of methane from the biogas. Even if the multiple membrane process is utilized with the properly selected membrane modules, the limited operating ranges have to be applied in the following parameters : the feed pressure, the flow rate, the mole fraction of methane in the biogas to get both the target methane concentration and the recovery rate of methane.

Shock Tube and Modeling Study of Ignition in Methane (메탄 기체의 점화 현상에 관한 충격관 실험 및 모델 연구)

  • Jee, Sung Bae;Kim, Won Kyoung;Shin, Kuan Soo
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.156-160
    • /
    • 1999
  • The ignition of methane-oxygen mixtures highly diluted with argon was examined in the temperature range of 1516-1937 K behind a reflected shock wave. The ignition delay times were measured by monitoring pressure profiles and the total emissions at 5.0 cm from the end wall. It was found that the experimental result was correlated by the temperature and the concentrations of the gases. To complement the experiment, computer modeling study of methane oxidation was carried out using a GRI 1.2 mechanism.

  • PDF

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Design and Spray Characteristics of Coaxial injector using GCH4/LOx (가스메탄/액체산소를 추진제로 이용한 동축인젝터 설계 및 분무 특성)

  • Kim, Bo-Yeon;Lee, Yank-Suk;Park, Jin-Ho;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.577-580
    • /
    • 2010
  • Coaxial injectors using GCH4/LOx as propellants was designed with shear(gas)/shear(liquid) type and shear(gas)/swirl(liquid) type. Spray characteristics were investigated by cold flow test. Spray patterns of the shear/shear and the shear/swirl type injectors were like a spout of water and hollow cone, respectively. Atomization efficiency of the shear/swirl type injector was better than atomization efficiency of the shear/shear type injector.

  • PDF

Highly Efficient Biogas Upgrading Process Using Polysulfone Hollow Fiber Membrane at Low Temperature (폴리술폰 중공사막을 이용한 바이오가스 고순도화 고효율 저온 분리 공정)

  • Kim, Se Jong;Han, Sang Hoon;Yim, Jin Hyuk;Lee, Chung Seop;Chang, Won Seok;Kim, Gill Jung;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.140-149
    • /
    • 2022
  • In this study, the conditions of low temperature and high pressure of biogas upgrading process using polysulfone membrane have been designed and tested to achieve the high recovery and efficiency corresponding to those of the highly selective polymeric materials. Polysulfone hollow fiber membrane with 4-component dope solution was spun via non-solvent induced phase separation. The hollow fiber membrane was mounted into a 1.5 inch housing. The effective area was 1.6 m2, and its performance was examined in various operation temperatures and pressures. CO2 and CH4 permeances were 412 and 12.7 GPU at 20℃, and 280 and 3.6 GPU at -20℃, respectively, while the CO2/CH4 selectivity increased from 32.4 to 77.8. Single gas test was followed by the mixed gas experiments using single-stage and double stage where the membrane area ratio varied from 1:1 to 1:3. At the single-stage, CH4 purity increased and the recovery decreased as the stage-cut increased. At the double stage, the area ratio of 1:3 showed the higher CH4 recovery as decreasing the operation temperature at the same purity of CH4 97%. Finally, polysulfone hollow fiber membranes have yielded of both CH4 purity and recovery of 97% at -20℃ and 16 barg.

Combustion Characteristics of the Gaseous-methane & Gaseous-oxygen Reactants under Highly Fuel-rich Conditions (연료과농 조건에서의 기체메탄-기체산소 반응물의 연소특성)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Bae, Chang Han;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.45-52
    • /
    • 2021
  • A hot-firing test was conducted using gaseous-methane and gaseous-oxygen under highly fuel-rich condition as a prior study for the development of a liquid propellant small rocket engine. To compare combustion characteristics for various equivalence ratios, the oxygen flow rate was set to 12 g/s and the methane flow rate was changed according to the equivalence ratio. As a result, it was observed that the steady-state characteristic velocity obtained during the hot-firing test steeply rose in the latter part of each test: the difference between the former and the latter steady value was enhanced overall in proportion to the equivalence ratio. Based on this, the equivalence ratio range depending on the variational characteristics of the characteristic velocity could be divided into three combustion regimes.

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.877-880
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Design and Verification of a Injector using Gas Methane and LOx as Propellants (가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증)

  • Jang, Jee-Hun;Min, Ji-Hong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.658-661
    • /
    • 2011
  • A coaxial swirl/shear injector using GCH4/LOx as propellants was degisned and manufactured. Flow analysis by Fluent was performed to decide the number of orifice and the rear shapes of inlet orifice etc. Flow rate of the injector was measured according to differential pressure and uniformity of injector's spray pattern was confirmed by a patternator. The results showed that the difference of flow rate was around 10% and the spray angle of oxidizer was $66^{\circ}$.

  • PDF

Separation Characteristics of $CH_4/CO_2$ Mixed Gas by Polyamide Composite Membrane (Polyamide 복합막을 이용한 메탄/이산화탄소 혼합기체의 분리 특성)

  • Lee, Jae-Hwa;Lee, Geon-Ho;Choi, Kyung-Seok;Poudel, Jeeban;Kim, Soo-Ryong;Oh, Sea-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.478-485
    • /
    • 2012
  • Polymers are widely used as membrane material for performing the separation of various gaseous mixtures due to their attractive permselective properties and high processability. The separation characteristics of $CH_4$ and $CO_2$ mixed gas using polyamide composite membrane has been studied in this work. The sample gas was prepared by mixing pure methane and carbon dioxide. Permeation tests were carried out at different operation conditions. Feed flow rates were varied between 800~1000 $cm^3/min$, and the stage cuts were varied between 50~60%. The gas inlet pressure and the temperature were varied as 6 bar and $30{\sim}70^{\circ}C$, respectively. The effects of the above mentioned parameters were investigated to estimate the permeability of $CH_4$ and $CO_2$, and the selectivity of $CO_2$ was also calculated for all conditions. The Arrhenius plots were also performed to obtaine the activation energies of $CH_4$ and $CO_2$ permeabilities.

The Study of Permeation Characteristics for Pure Carbon Dioxide and Methane, and Gas Mixture in Cellulosic Membrane (셀룰로오스 분리막을 통한 순수 이산화탄소 메탄 및 혼합기체의 투과 특성 연구)

  • Kim, Hyun Joon;Kim, Hong Il;Kang, Yong Soo;Hong, Suk In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.605-613
    • /
    • 1996
  • The permeation characteristics were investigated for pure carbon dioxide and methane through asymmetric cellulose acetate(CA) membrane, composite cellulose acetate membrane and asymmetric cellulose triacetate(CTA) membrane. In particular, the effect of operating pressure on the permeation performance was examined. And the permeation behavior for a mixture of carbon dioxide and methane ($CO_2/CH_4=57.6/42.4$) was also investigated and compared to the characteristics obtained from pure gases. The experiments were run at the range of partial pressure from 25 to 125 psig, and room temperature. The permeation behaviors of the CA composite and CTA membrane were similiar to those of the CA membrane. The permeation rates of pure carbon dioxide for CA, CA composite and CTA membrane were increased slightly with an increase in upstream partial pressure, while in the case of pure methane they were independent of upstream partial pressure. For a binary mixture of carbon dioxide and methane, abnormal permeation behaviors were observed due to the plasticization of carbon dioxide and the competition effect of each gas. The separation factor and permeation rate for CTA membrane were found to be higher than those for CA membrane, but the mechanical strength of CTA membrane was very poor. And the permeation rate for CA composite membrane was higher than that for CA membrane. Consequently, it can be said that the CA composite membrane is a strong candidate for the separation of $CH_4$ and $CO_2$.

  • PDF