가스메탄/액체산소를 추진제로 이용한 동축인젝터 설계 및 분무 특성

김보연* · 이양석** · 박진호** · 고영성*** · 김선진*** · 김 유***

Design and Spray Characteristics of Coaxial injector using GCH4/LOx

BoYeon Kim* · YankSuk Lee* · JinHo Park* · YoungSung Ko* · SunJin Kim** · Yoo Kim***

ABSTRACT

Coaxial injectors using GCH4/LOx as propellants was designed with shear(gas)/shear(liquid) type and shear(gas)/swirl(liquid) type. Spray characteristics were investigated by cold flow test. Spray patterns of the shear/shear and the shear/swirl type injectors were like a spout of water and hollow cone, respectively. Atomization efficiency of the shear/swirl type injector was better than atomization efficiency of the shear/shear type injector.

초 록

기체메탄/액체산소를 추진제로 이용한 동축인젝터를 설계하였으며, 전단(기체)/전단(액체)형 인젝터와 전단(기체)/스월(액체)형 인젝터 두 가지로 제작하였다. 수류시험을 통해 두 가지 인젝터의 미립화와 분무특성을 알아보았다. 전단/전단형 인젝터는 물줄기 형태로 분무되고, 전단/스월형 인젝터는 hollow cone형태로 분무되었다. 전단/전단형 인젝터보다 전단/스월형 인젝터의 미립화 성능이 우수하였다.

Key Words: Gas Methane(기체메탄), LOx(액체산소), Coaxial Injetor(동축 인젝터), Cold Flow Test (수류시험), Patternator(패터네이터)

1. 서 론

현재 전세계 주요 우주발사체 개발 국가에서

* 충남대학교 항공우주공학과

연락저자, E-mail: ysko5@cnu.kr

는 냉전시대 이후 성능을 최우선시 하는 경향에 따라 우주발사체의 1단의 추진제로 연료로는 케로신 및 액체수소, 산화제로는 액체산소 등을 주로 사용하고 있으며, 일부 발사체의 경우 아직까지도 독성추진제인 MMH, 하이드라진(hydrazine, N_2H_4), UDMH 및 사산화질소(N_2O_4) 등을 사용하고 있다[1]. 하지만 20세기 말부터 차세대 우

^{**} 청양대학교 소방안전관리학과

^{***} 충남대학교 기계공학과

주발사체 개발의 주요 이슈로 운용 비용의 절감 및 신뢰성의 향상과 더불어 친환경성이 대두되면서, 친환경적이고 비교적 저렴한 새로운 추진제에 대한 관심이 증대되고 있다[1]. 이러한 친환경 추진제로 주목을 받고 있는 추진제로는 과산화수소(H₂O₂)와 메탄이 대표적이라 할 수 있다[1]. 이 중 메탄의 장점으로는 청정성, 높은 비열, 높은 밀도 비추력, 취급 용이성, 저비용, 현지활용이 가능하다는 점이 있다[1,2].

본 연구에서는 이러한 메탄과 액체산소를 사용하는 엔진 설계를 위해 기체/액체 인젝터를 설계하였다. 기체/액체를 추진제로 사용하는 동축인젝터 형상은 크게 전단(기체)/전단(액체), 전단(기체)/스월(액체) 두 가지로 구분되며, 고속의기체 전단력으로 액체를 미립화시키도록 설계한다. 본 연구에서는 두 가지 형상의 인젝터를 설계/제작하여, 수류시험을 통해 인젝터의 미립화성능 및 분무 특성을 살펴보았다[3-5].

2. 인젝터 설계 및 제작

Table 1, 2에 제시된 설계요구조건을 바탕으로 동축형 인젝터를 설계하였으며, 동축형 인젝터 내부에 액체산소가 공급되며 외부에는 기체메탄이 공급되도록 설계하였다. Fig. 1, 2는 설계/제작된 인젝터 해드 도면과 사진을 나타낸 것으로서, 연료, 산화제 오리피스를 교체할 수 있도록제작하였다. 전단/스월형 산화제 오리피스의 직경은 3mm로 설계하였다. 전단/전단형 산화제오리피스의 직경은 1.8mm이고, 오리피스 끝단에6° 테이퍼를 주었다. 인젝터의 리세스 길이는 두가지 형상 모두 산화제 오리피스 직경의 1.5배로정하였다.

Table 1. Engine Design Parameter

조건		내용
추진제	연료	기체메탄
	산화제	액체산소
추력		250N
연소압		10bar
노즐 팽창비(압력비)		1000

Table 2. Injector Design Parameter

조건	연료(기체)	산화제(액체)
인젝터 타입	동축전단	동축스월
한격이 나타	5 <u>국</u> 선인	동축전단
차압 $[\Delta P]$	5 bar	5 bar
유량 [g/s]	19.5	58.5
Inlet Orifice	8	4 (스월형)

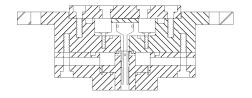


Fig. 1 Schematic of injetor head

Fig. 2 Injector head (bottom view)

3. 실험장치 및 방법

수류시험을 통해 인젝터의 분산각 및 분무 특성을 살펴보기 위하여, Fig. 3과 같은 수류시험장치를 사용하였다. 안전을 위하여 액체산소와기체메탄의 모의 추진제로 물과 기체질소를 사용하였다. 수류시험을 통해 인젝터의 분산각 및미립화 정도를 파악하였고, Fig. 4와 같이 셀 개수 20×18의 패터네이터(patternator)를 이용하여인젝터의 분무 패턴을 확인하였다.

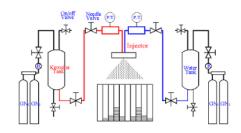


Fig. 3 Cold Flow Test System

Fig. 4 Patternator

4. 결과 및 고찰

4.1 분산각 측정

4.1.1 액체분사

설계 가압 압력인 5bar로 유체를 공급하였으며, 유량은 두 가지 타입 모두 모의액 물을 사용했을 때 예상유량 54g/s에 유사하게 측정되었다. 전단/스월형 인젝터는 분산각이 Fig. 5(a)와같이 19°로 측정되었다. 이는 recess의 크기가 크기 때문에 분무된 액막이 기체 오리피스 내부에부딪히기 때문에 나타난 현상이며, 기체 오리피스를 제거한 상태에서 분무각을 측정하였을 때는 65°로 측정되었다. 전단/전단형 인젝터는 Fig. 5(b)와 같이 분산각이 거의 없이 물줄기 형태로 분사되었으며, 이로부터 현재 전단 인젝터의 경우 테이퍼의 효과가 거의 없음을 확인하였다.

(b) Shear type

Fig. 5 Spray pattern of liquid injection

4.1.2 기체/액체 동시 분사

기체/액체 혼합 및 미립화의 특성을 알아 볼 수 있는 변수로 Momentum flux ratio(J), Momentum ratio(M), Weber number(We)등 이 있다[2]. 기체/액체 혼합분사 수류시험 조건은 연소 실험시의 분무 조건과 동일하게 J=0.2로 설 정하고 분무 시험을 수행하였다.

$$J = \frac{\rho_{CH4} \, V_{CH4}^2}{\rho_{LOx} \, V_{LOx}^2} \tag{1}$$

$$M = \frac{m_{CH4} V_{CH4}}{m_{LOx} V_{LOx}}$$
 (2)

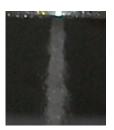

$$We = \frac{\rho_{CH4} (V_{CH4} - V_{LOx})^2 d_{LOx}}{\sigma}$$
 (3)

Fig. 6은 기체/액체 동시 분사시의 경우의 분무 사진으로서, 전단/스월형 인젝터는 기체/액체를 혼합하여 분사하였을 때 고속의 기체 전단력으로 인하여, 액체만 분사하였을 때보다 액적의 미립화가 향상되는 것을 볼 수 있다. 또한 이로 인해 액체만 분산될 때보다 분산각이 커져 33°가 측정되었다.

전단/전단형 인젝터는 액체만 분사하였을 때보다 기체/액체 동시 분사시 분산각이 향상되지는 않았으나, 기체 전단력에 의해 액주의 외관부분에서 미립화가 향상됨을 확인하였다.

(a) Shear/swirl

(b) Shear/shear

Fig. 6 Spray pattern of gas/liquid injection

4.2 패터네이터 측정

분무 분포를 확인하기 위하여 인젝터면에서 5cm 떨어진 곳에서 패터네이터를 이용하여 유체를 채집하였다. 전단/전단형 인젝터는 물줄기 형태로 분사되어 패터네이터 측정이 크게 의미가 없기 때문에 패터네이터 측정을 수행하지 않았

다. 전단/스월형 인젝터의 분무 패턴을 살펴보기 위해 액체만 분사한 결과 Fig.7과 같으며, J=0.2 일 때 분사 패턴을 분석한 결과 Fig. 8과 같다. 중앙에는 유량이 거의 없고 외곽에 유체가 집중되는 hollow cone형태로 분사되는 것을 확인하였다. 기체/액체가 동시에 분사되면서 액체만 분무 될때 보다 분무패턴이 다소 넓어지는 것을 확인하였다.

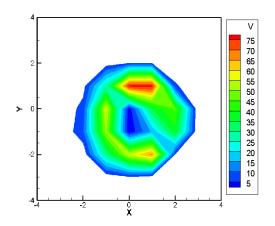


Fig. 7 Spray Pattern of shear/swirl injector (liqiuid injection)

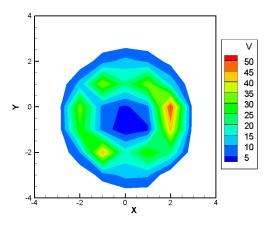


Fig. 8 Spary Pattern of shear/swirl injector at J=0.2 (gas/liquid injection)

5. 결 론

본 연구에서는 메탄과 액체산소를 추진제로 사용하는 액체로켓엔진을 설계하기 위하여, 기체 /액체를 추진제로 하는 인젝터를 전단(기체)/전 단(액체)형, 전단(기체)/스월(액체)형 두가지로 설계/제작하였다. 물과 기체질소를 이용한 수류 실험을 수행하였으며, 전단/전단형 인젝터는 유체가 물줄기 형태로 분사되고 전단/스월형 인젝터는 hollow cone 형태로 분사됨을 확인하였다. 기체/액체가 동시 분사될 때 액체만 분사될 때보다 분산각이 커지고 미립화가 향상되는 것을확인하였다.

향후 전단/스월형 인젝터의 리세스 길이를 변화시켜 수류시험을 수행할 예정이며, GSV를 이용하여 액적 크기와 속도를 측정하여 보다 세밀한 분무 특성을 살펴볼 예정이다.

후 기

본 연구는 한국연구재단을 통해 교육과학기술 부의 우주기초원천기술개발 사업(NSL, National Space Lab)으로 지원받아 수행되었습니다.

참고문 헌

- 1. 김선진, 이양석, 고영성, "친환경 추진제인 과산화수소와 액체메탄의 활용역사와 연구 동향," 한국추진공학회지 제14권 제3호,
- D. Salgues et. al., "Shear and Swirl Coaxial Injector Studies of LOX/GCH4 Rocket Combustion Using Non-Intrusive Laser Diagnostics", AIAA Aerospace Sciences meeting and exhibit AIAA-2006-757, 2006
- 3. S. A. Rahman, S. Pal, and R.J. Santoro, " Swirl Coaxiail Atomization: Cold-Flow and Hot-fire Experiments", Pennsylvania AIAA 95-0381, 1995
- 4. 임지혁, "액체로켓용 기체-액체 스월 동축 형 분사기의 분무특성," 서울대학교, 2010
- 5. 강경택., "전단형 동축 인젝터의 미립화 및 혼합특성에 관한 실험적연구", 충남대학교., 2000