• Title/Summary/Keyword: 기준 강우량

Search Result 391, Processing Time 0.023 seconds

Site Monitoring System of Earthquake, Fault and Slope for Nuclear Power Plant Sites (원자력발전소의 부지감시시스템의 운영과 활용)

  • Park, Donghee;Cho, Sung-il;Lee, Yong Hee;Choi, Weon Hack;Lee, Dong Hun;Kim, Hak-sung
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.185-201
    • /
    • 2018
  • Nuclear power plants(NPP) are constructed and operated to ensure safety against natural disasters and man-made disasters in all processes including site selection, site survey, design, construction, and operation. This paper will introduce a series of efforts conducted in Korea Hydro and Nuclear Power Co. Ltd., to assure the safety of nuclear power plant against earthquakes and other natural hazards. In particular, the present status of the earthquake, fault, and slope safety monitoring system for nuclear power plants is introduced. A earthquake observatory network for the NPP sites has been built up for nuclear safety and providing adequate seismic design standards for NPP sites by monitoring seismicity in and around NPPs since 1999. The Eupcheon Fault Monitoring System, composed of a strainmeter, seismometer, creepmeter, Global Positioning System, and groundwater meter, was installed to assess the safety of the Wolsung Nuclear Power Plant against earthquakes by monitoring the short- and long-term behavioral characteristics of the Eupcheon fault. Through the analysis of measured data, it was verified that the Eupcheon fault is a relatively stable fault that is not affected by earthquakes occurring around the southeastern part of the Korean peninsula. In addition, it was confirmed that the fault monitoring system could be very useful for seismic safety analysis and earthquake prediction study on the fault. K-SLOPE System for systematic slope monitoring was successfully developed for monitoring of the slope at nuclear power plants. Several kinds of monitoring devices including an inclinometer, tiltmeter, tension-wire, and precipitation gauge were installed on the NPP slope. A macro deformation analysis using terrestrial LiDAR (Light Detection And Ranging) was performed for overall slope deformation evaluation.

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Effect of Activated Carbon, Orpar or Zeolite on Leaching Loss of Fenitrothion, Triadimefon and Diniconazole in Model Green of Golf Course (골프장 모형그린에서 활성탄, Orpar또는 Zeolite의 처리가 Fenitrothion, Triadimefon, Diniconazole의 용탈에 미치는 영향)

  • Oh, Sang-Sil;Koh, Yong-Ku;Chung, Jong-Bae;Hyun, Hae-Nam
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.97-102
    • /
    • 2001
  • Cheju island depends on a hydrogeologically vulnerable aquifer system as its principle source of drinking water. Most of golf courses are located in the area which is important for the ground water recharge, and pesticides are applied to golf courses often at relatively high rates. Therefore, turf pesticides in golf course should be applied without adversely impacting ground water. In this experiment, downward movement of pesticides was monitored in model greens of golf course, where different adsorbents were layered in 3-cm thickness at 35-cm depth, and effect of the adsorption layer on the leaching loss of pesticides was investigated. Major leachings were observed in the periods of heavy rain and very limited leaching was observed under artificial irrigation. Fenitrothion and triadimefon, which have relatively short persistence and high adsorption coefficient, were found in the leachate in low concentrations only at the first rainfall event, around 20 days after the pesticide application. However, diniconazole, which has a relatively long half-life (97 days), was detected in the leachate during the whole period of experiment and concentration was much higher than those of the other pesticides. Maximum leachate concentrations were 1.9, 10.3, and 84.5 ${\mu}l^{-1}$ for fenitrothion, triadimefon, and diniconazole, respectively. Therefore, in golf course green which allows rapid water percolation and has extremely low adsorption capacity, persistence in soil could be more important factor in determination of leaching potential of pesticides. Total quantity of pesticides leached from the model green was <0.2% for fenitrothion and triadimefon and 1.8% for diniconazole. Adsorption layers significantly reduced pesticide leaching, and active carbon and Orpar were more effective than zeolite. In the model green having adsorption layer of active carbon or Orpar, leaching loss of pesticides was reduced below 0.01% of the initial application.

  • PDF

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed (기후변화와 토지이용변화가 도시화 진행 유역수문에 미치는 영향 평가)

  • Ahn, So Ra;Jang, Cheol Hee;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.567-577
    • /
    • 2015
  • Climate and land use changes have impact on availability water resource by hydrologic cycle change. The purpose of this study is to evaluate the hydrologic behavior by the future potential climate and land use changes in Anseongcheon watershed ($371.1km^2$) using SWAT model. For climate change scenario, the HadGEM-RA (the Hadley Centre Global Environment Model version 3-Regional Atmosphere model) RCP (Representative Concentration Pathway) 4.5 and 8.5 emission scenarios from Korea Meteorological Administration (KMA) were used. The mean temperature increased up to $4.2^{\circ}C$ and the precipitation showed maximum 21.2% increase for 2080s RCP 8.5 scenario comparing with the baseline (1990-2010). For the land use change scenario, the Conservation of Land Use its Effects at Small regional extent (CLUE-s) model was applied for 3 scenarios (logarithmic, linear, exponential) according to urban growth. The 2100 urban area of the watershed was predicted by 9.4%, 20.7%, and 35% respectively for each scenario. As the climate change impact, the evapotranspiration (ET) and streamflow (ST) showed maximum change of 20.6% in 2080s RCP 8.5 and 25.7% in 2080s RCP 4.5 respectively. As the land use change impact, the ET and ST showed maximum change of 3.7% in 2080s logarithmic and 2.9% in 2080s linear urban growth respectively. By the both climate and land use change impacts, the ET and ST changed 19.2% in 2040s RCP 8.5 and exponential scenarios and 36.1% in 2080s RCP 4.5 and linear scenarios respectively. The results of the research are expected to understand the changing water resources of watershed quantitatively by hydrological environment condition change in the future.

Characteristics of stormwter runoff from highways with unit traffic volume (고속도로 자동차 통행량에 따른 강우유출수 유출 특성 분석)

  • Choi, Jiyeon;Hong, Jungsun;Kang, Heeman;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • This study was conducted to analyze the runoff characteristics of the highway depending on the number of vehicles and to provide the installation proposal of an NPS pollution reduction facility. There were a total of 5 monitoring sites used for the study namely, Gyeongbu, Seohaean, Honam and Tongyeoung Dageon highway. Monitoring events started from 2006 until 2015 having a total of 44 storm events. According to monitoring statistics, the average antecedent dry days (ADD) and rainfall was 6.2 days and 19.2 mm, respectively. The Gyeongbu Highway (H-4) was recorded having the highest Average Daily Traffic and Catchment Area (ADT/CA) with $49.4car/day{\cdot}m^2$ while other site were less than $10car/day{\cdot}m^2$. The average concentration of the NPS pollutants generated from monitoring sites were 63.5 mg/L(TSS), 24.9 mg/L(BOD), 3.35 mg/L(TN), 0.63 mg/L(TP) and 298 ug/L(Total Zn). This exhibited lower values in comparison to the remarks of highway related runoff EMC values published in Korea. Moreover, through the results of the correlation analysis between the contaminant concentration and ADT/CA, $R^2$ value of SS showed the highest correlation with 585. Through the correlation equation between ADT/CA and EMC of TSS, when there is 73.7 mg/L of TSS EMC found from a domestic highway, ADT/CA ratio is normally $13car/day{\cdot}m^2$. Therefore, in a case of more than 13 cars passing through a certain area, the area can be considered and present as the point of generation of nonpoint source pollutants. Also, in this study, since it considered a unit area ADT indicated in previous studies, it was determined that it has a high applicability and utilization in generalized units than conventional study which were conventionally done.

Biological Stream Health and Physico-chemical Characteristics in the Keum-Ho River Watershed (금호강 수계에서 생물학적 하천 건강도 및 이화학적 특성)

  • Kwon, Young-Soo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.145-156
    • /
    • 2006
  • The objective of this study was to evaluate biological health conditions and physicochemical status using multi-metric models at five sites of the Keum-Ho River during August 2004 and June 2005. The research approach was based on a qualitative habitat evaluation index (QHEI), index of biological integrity (IBI) using fish assemblage, and long-term chemical data (1995 ${\sim}$ 2004), which was obtained from the Ministry of Environment, Korea. For the biological health assessments, regional model of the IBI in Korea (An,2003), was applied for this study. Mean IBI in the river was 30 and varied from 23 to 48 depending on the sampling sites. The river health was judged to be "fair condition", according to the stream health criteria of US EPA (1993) and Barbour et al. (1999). According to the analysis of the chemical water quality data of the river, BOD, COD, conductivity, TP, TN, and TSS largely varied epending on the sampling sites, seasons and years. Variabilities of some parameters including BOD, COD, TP, TN, and conductivity were greater in the downstream than in the upstream reach. This phenomenon was evident in the dilution by the rain during the monsoon. This indicates that precipitation is a very important factor of the chemical variations of water quality. Community analyses showed that species diversity index was highest (H=0.78) in the site 1, while community dominance index was highest in the site 3, where Opsariichthys uncirostris largely dominated. In contrast, the proportions of omnivore and tolerant species were greater in the downstream reach, than in the upstream reach. Overall, this study suggests that some sites in the downstream reach may need to restore the aquatic ecosystem for better biological health.

A Study on the Generalization of Multiple Linear Regression Model for Monthly-runoff Estimation (선형회귀모형(線型回歸模型)에 의한 하천(河川) 월(月) 유출량(流出量) 추정(推定)의 일반화(一般化)에 관한 연구(硏究))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 1980
  • The Linear Regression Model to extend the monthly runoff data in the short-recorded river was proposed by the author in 1979. Here in this study generalization precedure is made to apply that model to any given river basin and to any given station. Lengthier monthly runoff data generated by this generalized model would be useful for water resources assessment and waterworks planning. The results are as follows. 1. This Linear Regression Model which is a transformed water-balance equation attempts to represent the physical properties of the parameters and the time and space varient system in catchment response lumpedly, qualitatively and deductively through the regression coefficients as component grey box, whereas deterministic model deals the foregoings distributedly, quantitatively and inductively through all the integrated processes in the catchment response. This Linear Regression Model would be termed "Statistically deterministic model". 2. Linear regression equations are obtained at four hydrostation in Geum-river basin. Significance test of equations is carried out according to the statistical criterion and shows "Highly" It is recognized th at the regression coefficients of each parameter vary regularly with catchment area increase. Those are: The larger the catchment area, the bigger the loss of precipitation due to interception and detention storage in crease. The larger the catchment area, the bigger the release of baseflow due to catchment slope decrease and storage capacity increase. The larger the catchment area, the bigger the loss of evapotranspiration due to more naked coverage and soil properties. These facts coincide well with hydrological commonsenses. 3. Generalized diagram of regression coefficients is made to follow those commonsenses. By this diagram, Linear Regression Model would be set up for a given river basin and for a given station (Fig.10).

  • PDF

Analysis on the Characteristics of Nonpoint sources during the Precipitation in Residential Area (강우 시 주거지역에서의 비점오염원 유출특성 분석)

  • Kwon, Heongak;Im, Toehyo;Na, Seungmin;Lee, Chunsik;Cheon, Seuk
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.391-401
    • /
    • 2015
  • In this study, divided into small category groups for the residential area it was carried out monitoring for the runoff during precipitation. Based on the results analyzed according to the nonpoint sources Housing leakage characteristics. Analysis of the rainfall runoff and concentration of each type of exclusive detached house with apartments, in the majority of precipitation types runoff concentrations were higher in early. In the case of a difference of two points per runoff rate rainfall it was largely investigation. The average runoff is estimated loadings of BOD $101.1kg/km^2$, SS $232.2kg/km^2$, T-N $18.2kg/km^2$, T-P $2.0kg/km^2$ detached house case, if the apartment was estimated at point BOD $108.82kg/km^2$, SS $329.18kg/km^2$, T-N $57.67kg/km^2$, T-P $4.21kg/km^2$. The average EMCs is BOD BOD 6.6 mg/L, SS 12.8 mg/L, T-N 1.518 mg/L, T-P 0.099 mg/L detached house case, if the apartment was estimated at point BOD 6.3 mg/L, COD 11.2mg/L, SS 14.5 mg/L, T-N 3.1 mg/L, T-P 0.2 mg/L. The initial 30 percentage calculated based on the initial results, the total flow of 30% if the outflow of detached house showed a net percentage difference to T-P 1.04 > T-N 0.97 > BOD 0.90 > SS 0.80. The apartment area showed the percentage difference in the water quality in the order of BOD 1.49 > T-P 1.40 > SS 1.30 > T-N 0.96 per item.

The Effect of Application Levels of Slurry Composting and Bio-filtration Liquid Fertilizer on Soil Chemical Properties and Growth of Radish and Corn (총각무와 옥수수 재배시 SCB액비 시용수준이 토양화학성과 생육에 미치는 영향)

  • Kang, Seong-Soo;Kim, Min-Kyeong;Kwon, Soon-Ik;Kim, Myong-Suk;Yoon, Sung-Won;Ha, Sang-Gun;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1306-1313
    • /
    • 2011
  • A liquid fertilizer treated with slurry composting and biofiltration (SCB) process has been applied increasingly on agricultural field but the effects on the soil properties and crop production has not been throughly evaluated. This study was conducted to investigate the effect of the SCB application on soil chemical properties and the growth of radish and corn. SCB liquid fertilizer as a basal fertilization was treated with five levels based on $6kg\;10a^{-1}$ for radish and $10kg\;10a^{-1}$ for corn. The experimental design was the completely randomized block design with five levels and three replicates. Electrical conductivity (EC), $NO_3$-N, Exch. K and Exch. Na increased depending on the treatment levels of SCB. There were no changes in soil organic matter, Avail. $P_2O_5$, Exch. Ca and Exch. Mg. EC, $NO_3$-N and Exch. Na content decreased as precipitation increased. Especially, they decreased up to the initial condition before the treatment after the heavy rainy season in 2008. Although Exch. K decreased at the rainy season, they remained relatively higher content after the experiment on August, 2008. Fresh weight and the amount of N uptake of radish increased due to the levels of SCB, but corn did not present any significant increase. It is recommended that we need to decide the proper amount of SCB as well as the application method on the field to increase the productivity and decrease environmental stress. Additional experiments also need to clarify the effect of the trace element and heavy metal accumulations due to long term application of SCB.