• 제목/요약/키워드: 기업리뷰

검색결과 123건 처리시간 0.022초

인공지능 기반 수요예측 기법의 리뷰 (A review of artificial intelligence based demand forecasting techniques)

  • 정혜린;임창원
    • 응용통계연구
    • /
    • 제32권6호
    • /
    • pp.795-835
    • /
    • 2019
  • 최근 다양한 분야에서 '빅데이터'가 생성되었다. 많은 기업들은 인공지능(AI)을 기반으로 빅데이터 분석이 가능한 시스템을 구축하여 이익 창출을 시도하고 있다. 인공지능 기술을 접목함으로써 방대한 양의 데이터를 효율적으로 분석하고 효과적으로 활용하는 것은 점점 더 중요해지고 있다. 특히 재무, 조달, 생산 및 마케팅과 같은 다양한 분야에서 국가 및 기업 경영 관리에있어 최소의 오차와 최대의 정확도를 갖춘 수요예측은 절대적으로 중요한 요소이다. 이때 각 분야의 수요패턴을 고려한 적절한 모델을 적용하는 것이 중요하다. 전통적으로 쓰이는 시계열모델이나 회귀모델로도 비대해진 실제 데이터의 복잡한 비선형적인 패턴을 분석할 수 있다. 그러나 다양한 비선형 모델들 중에서 적절한 모델을 선택하는 것은 사전 지식 없이는 어려운 일이다. 최근에는 인공지능 기반의 기법들인 머신러닝이나 딥러닝 기법을 중심으로 이루어진 연구들이 이를 극복할 수 있음을 증명하고 있다. 뿐만 아니라 정형데이터와 이미지나 텍스트의 비정형 데이터 분석을 통한 수요예측도 높은 정확도를 갖춘 결과를 보이고 있다. 따라서 본 연구에서는 수요예측이 비교적 활발하게 일어나는 중요한 분야들을 나누어 설명하였다. 그리고 각 분야별로 갖는 특징적인 성격을 고려한 인공지능 기반의 수요예측 기법에 대해 머신러닝과 딥러닝 기법으로 나누어 소개하였다.

온라인 소셜네트워크의 제품판매 관련 구전효과에 대한 기여도 분석 (Does Online Social Network Contribute to WOM Effect on Product Sales?)

  • 이주윤;손인수;이동원
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.85-105
    • /
    • 2012
  • 온라인 소셜네트워크의 확산으로 인해 사용자들은 특정제품과 서비스에 대한 자신의 생각과 경험을 보다 손쉽게 공유 할 수 있게 되었으며 이러한 환경변화는 기업의 사업성과에 영향을 미칠 수 있는 소비자 구전효과의 영향을 심화시킬 것으로 예상된다. 본 연구의 목적은 영화산업에서의 온라인 소셜네트워크의 구전효과 발생에 대한 기여도를 또 다른 온라인 매체인 인터넷 포탈과의 비교를 통해 검증하는데 있다. 이를 위해 2011년 2월부터 6월 사이에 국내 개봉된 영화 및 이들 영화와 관련된 트위터 메시지 그리고 네이버 무비상의 리뷰를 수집 분석하였다. 분석결과 온라인 소셜네트워크(트위터)와 인터넷 포털 모두에서 영화의 흥행과 관련한 구전효과가 존재하고 있음을 발견하였다. 또한 영화의 인기도에 따라 온라인 소셜케트워크와 인터넷 포털의 구전효과 발생에 대한 영향도가 다르게 나타나는 점도 발견하였다. 인기영화(블록 버스터 영화)의 경우 개봉이전에는 온라인 소셜네트워크에 의한 구전효과가 유의하게 발생하였으며 개봉 이후에는 온라인 소셜네트워크와 인터넷 포털에 의한 구전효과가 유의하게 발생함을 알 수 있었다. 비 인기영화의 경우 개봉이전에만 온라인 소셜네트워크와 인터넷 포털에 의한 구전효과가 유의하게 발생함을 발견하였다. 본 연구의 결과는 영화와 같은 문화상품과 관련한 구전효과 발생에 있어 온라인 소셜네트워크의 영향에 관한 학문적 지식을 증대시키고 실무적으로 기업이 제품 및 서비스에 대한 브랜드가치 재고를 위해 온라인 소셜네트워크를 어떻게 전략적으로 활용할 수 있는가에 방향을 제시 할 것이라 기대된다.

딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출 (Deriving adoption strategies of deep learning open source framework through case studies)

  • 최은주;이준영;한인구
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.27-65
    • /
    • 2020
  • 많은 정보통신기술 기업들은 자체적으로 개발한 인공지능 기술을 오픈소스로 공개하였다. 예를 들어, 구글의 TensorFlow, 페이스북의 PyTorch, 마이크로소프트의 CNTK 등 여러 기업들은 자신들의 인공지능 기술들을 공개하고 있다. 이처럼 대중에게 딥러닝 오픈소스 소프트웨어를 공개함으로써 개발자 커뮤니티와의 관계와 인공지능 생태계를 강화하고, 사용자들의 실험, 적용, 개선을 얻을 수 있다. 이에 따라 머신러닝 분야는 급속히 성장하고 있고, 개발자들 또한 여러가지 학습 알고리즘을 재생산하여 각 영역에 활용하고 있다. 하지만 오픈소스 소프트웨어에 대한 다양한 분석들이 이루어진 데 반해, 실제 산업현장에서 딥러닝 오픈소스 소프트웨어를 개발하거나 활용하는데 유용한 연구 결과는 미흡한 실정이다. 따라서 본 연구에서는 딥러닝 프레임워크 사례연구를 통해 해당 프레임워크의 도입 전략을 도출하고자 한다. 기술-조직-환경 프레임워크를 기반으로 기존의 오픈 소스 소프트웨어 도입과 관련된 연구들을 리뷰하고, 이를 바탕으로 두 기업의 성공 사례와 한 기업의 실패 사례를 포함한 총 3 가지 기업의 도입 사례 분석을 통해 딥러닝 프레임워크 도입을 위한 중요한 5가지 성공 요인을 도출하였다: 팀 내 개발자의 지식과 전문성, 하드웨어(GPU) 환경, 데이터 전사 협력 체계, 딥러닝 프레임워크 플랫폼, 딥러닝 프레임워크 도구 서비스. 그리고 도출한 성공 요인을 실현하기 위한 딥러닝 프레임워크의 단계적 도입 전략을 제안하였다: 프로젝트 문제 정의, 딥러닝 방법론이 적합한 기법인지 확인, 딥러닝 프레임워크가 적합한 도구인지 확인, 기업의 딥러닝 프레임워크 사용, 기업의 딥러닝 프레임워크 확산. 본 연구를 통해 각 산업과 사업의 니즈에 따라, 딥러닝 프레임워크를 개발하거나 활용하고자 하는 기업에게 전략적인 시사점을 제공할 수 있을 것이라 기대된다.

온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발 (Development of Sentiment Analysis Model for the hot topic detection of online stock forums)

  • 홍태호;이태원;리징징
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.187-204
    • /
    • 2016
  • 소셜 미디어를 이용하는 사용자들이 직접 작성한 의견 혹은 리뷰를 이용하여 상호간의 교류 및 정보를 공유하게 되었다. 이를 통해 고객리뷰를 이용하는 오피니언마이닝, 웹마이닝 및 감성분석 등 다양한 연구분야에서의 연구가 진행되기 시작하였다. 특히, 감성분석은 어떠한 토픽(주제)를 기준으로 직접적으로 글을 작성한 사람들의 태도, 입장 및 감성을 알아내는데 목적을 두고 있다. 고객의 의견을 내포하고 있는 정보 혹은 데이터는 감성분석을 위한 핵심 데이터가 되기 때문에 토픽을 통한 고객들의 의견을 분석하는데 효율적이며, 기업에서는 소비자들의 니즈에 맞는 마케팅 혹은 투자자들의 시장동향에 따른 많은 투자가 이루어지고 있다. 본 연구에서는 중국의 온라인 시나 주식 포럼에서 사용자들이 직접 작성한 포스팅(글)을 이용하여 기존에 제시된 토픽들로부터 핫토픽을 선정하고 탐지하고자 한다. 기존에 사용된 감성 사전을 활용하여 토픽들에 대한 감성값과 극성을 분류하고, 군집분석을 통해 핫토픽을 선정하였다. 핫토픽을 선정하기 위해 k-means 알고리즘을 이용하였으며, 추가로 인공지능기법인 SOM을 적용하여 핫토픽 선정하는 절차를 제시하였다. 또한, 로짓, 의사결정나무, SVM 등의 데이터마이닝 기법을 이용하여 핫토픽 사전 탐지를 하는 감성분석을 위한 모형을 개발하여 관심지수를 통해 선정된 핫토픽과 탐지된 핫토픽을 비교하였다. 본 연구를 통해 핫토픽에 대한 정보 제공함으로써 최신 동향에 대한 흐름을 알 수 있게 되고, 주식 포럼에 대한 핫토픽은 주식 시장에서의 투자자들에게 유용한 정보를 제공하게 될 뿐만 아니라 소비자들의 니즈를 충족시킬 수 있을 것이라 기대된다.

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

국내 지역사회 통합돌봄 선도사업 성과 및 동향에 관한 체계적 문헌고찰 (Systematic Review on Outcome and Trends of Community Care Pilot Project in Korea)

  • 김경범;허민희;장하은;노진원;김장묵
    • 융합정보논문지
    • /
    • 제12권5호
    • /
    • pp.159-167
    • /
    • 2022
  • 2018년 11월 보건복지부가 지역사회 돌봄 사업을 제20대 국정과제로 채택하였음에도 프로젝트의 성과나 동향을 보고하는 체계적인 검토가 이루어지지 않았다. 본 연구는 커뮤니티 케어 시범사업과 관련한 기존 근거를 체계적으로 검토하였으며, 그 결과 원저 18편과 평론 43편이 최종 선정되었다. 원저의 경우 수요조사(n=4) 및 모델제안(n=4), 터치포인트 활용(n=3), 공간설계 및 건축모델(n=3), 인력양성 및 역할 설정(n=2), 우선 순위 목표(n=1) 및 연구 동향 연구(n=1)등이 있었으며, 리뷰 문헌의 경우 노인에 대한 문헌이 가장 많았고(n=12), 장애인 및 정신질환에 관한 문헌은 상대적으로 적었다(n=2). 지역사회 돌봄 시범사업이 시행된 지 1년 정도밖에 되지 않아 본 사업과 관련된 근거가 부족하고 사업의 성과를 정량적으로 보고한 연구가 부족한 실정이다. 본 연구는 노인뿐만 아니라 장애인, 정신질환자, 노숙자에 대해서도 더 많은 연구가 필요함을 시사한다.

한글 텍스트 감정 이진 분류 모델 생성을 위한 미세 조정과 전이학습에 관한 연구 (A Study on Fine-Tuning and Transfer Learning to Construct Binary Sentiment Classification Model in Korean Text)

  • 김종수
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.15-30
    • /
    • 2023
  • 근래에 트랜스포머(Transformer) 구조를 기초로 하는 ChatGPT와 같은 생성모델이 크게 주목받고 있다. 트랜스포머는 다양한 신경망 모델에 응용되는데, 구글의 BERT(bidirectional encoder representations from Transformers) 문장생성 모델에도 사용된다. 본 논문에서는, 한글로 작성된 영화 리뷰에 대한 댓글이 긍정적인지 부정적인지를 판단하는 텍스트 이진 분류모델을 생성하기 위해서, 사전 학습되어 공개된 BERT 다국어 문장생성 모델을 미세조정(fine tuning)한 후, 새로운 한국어 학습 데이터셋을 사용하여 전이학습(transfer learning) 시키는 방법을 제안한다. 이를 위해서 104 개 언어, 12개 레이어, 768개 hidden과 12개의 집중(attention) 헤드 수, 110M 개의 파라미터를 사용하여 사전 학습된 BERT-Base 다국어 문장생성 모델을 사용했다. 영화 댓글을 긍정 또는 부정 분류하는 모델로 변경하기 위해, 사전 학습된 BERT-Base 모델의 입력 레이어와 출력 레이어를 미세 조정한 결과, 178M개의 파라미터를 가지는 새로운 모델이 생성되었다. 미세 조정된 모델에 입력되는 단어의 최대 개수 128, batch_size 16, 학습 횟수 5회로 설정하고, 10,000건의 학습 데이터셋과 5,000건의 테스트 데이터셋을 사용하여 전이 학습시킨 결과, 정확도 0.9582, 손실 0.1177, F1 점수 0.81인 문장 감정 이진 분류모델이 생성되었다. 데이터셋을 5배 늘려서 전이 학습시킨 결과, 정확도 0.9562, 손실 0.1202, F1 점수 0.86인 모델을 얻었다.

모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석 (A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach)

  • 김소연;조지연;박상열;이봉규
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.109-119
    • /
    • 2024
  • 본 연구는 모바일 등 온디바이스(on-device)에 탑재된 생성형 AI 기반 서비스가 증가하는 환경 속에서 온디바이스 AI 관련 초기연구에 기여하고자 한다. 모바일 환경에서 생성형 AI 기반 챗봇 서비스의 성공 전략을 도출하기 위해 구글 플레이 스토어에서 수집한 20만 건 이상의 실제 사용자 경험 리뷰 데이터를 LDA 토픽모델링 기법을 사용하여 분석하였다. 정보시스템 성공 모델(ISSM)에 기반하여 도출된 주제를 해석한 결과 정보 품질에는 튜터링, 대답의 제한, 신뢰할 수 없는 정보와 같은 토픽이, 시스템 품질에는 멀티모달서비스, 대화의 품질, 디바이스 상호운용성의 토픽이, 서비스 품질에는 디바이스 간 호환성, 서비스의 사용 용이성, 유료 서비스의 품질, 계정 호환성의 토픽이, 마지막으로 순 효익에는 창의적 협업 토픽이 연결되었다. 생성형 AI의 의인화는 기존 모델로 설명되지 않는 새로운 경험 요인으로 나타났다. 본 연구는 사용자 측면에서의 구체적인 긍정 및 부정 경험 차원을 이론에 기반하여 설명함으로써 향후 관련 연구의 방향을 제시하고, 성공적인 비즈니스를 위한 개선점과 보완점을 찾아 기업에게 서비스의 성공적 운영을 위한 전략적 인사이트를 제공하고자 한다.

차세대 모빌리티 전력 저장 이차전지 핵심소재 (Secondary Battery Electrode Material for Next Generation Mobility Power Storage)

  • 송유진;김서현;김세진;김재훈
    • 청정기술
    • /
    • 제30권3호
    • /
    • pp.159-174
    • /
    • 2024
  • 화석원료 기반의 에너지 소비가 급증함에 따라 지구온난화 또한 가속화되고 있다. 특히 도로 수송분야는 이산화탄소 배출이 많은 분야여서 기존의 내연기관 자동차 대신 전기자동차 활용을 권장하고 있으며 이에 따라 이차전지의 중요성이 대두되고 있다. 이차전지는 에너지를 사용하고 충방전 과정을 통해 재사용 할 수 있는 가역적인 전지로, 현재는 리튬 이온을 캐리어로 이용한 리튬이온전지가 많이 사용되고 있다. 이차전지는 에너지, 출력, 수명, 환경친화적, 비용, 안정성 등의 6개 주요 요인을 중요시하고 있으며 각 구성 요소의 소재 특성을 파악하여 6개의 요인을 모두 만족하기 위한 연구가 활발히 진행되고 있다. 양극재는 리튬 소재에서 벗어나기 힘든 만큼 리튬을 매개로 코발트, 니켈, 망간, 알루미늄 등 여러 물질을 혼합하여 좀 더 성능이 높은 소재 연구를 수행하고 있으며, 음극재는 흑연, 실리콘, 리튬 금속 등을 이용하여 용량을 증가시키는 방향으로 진행하고 있다. 전해질의 경우 현재 액체 전해질이 주로 사용되지만 안정성을 고려하여 고체 전해질 또한 연구 중이며 에너지와 출력 요인을 만족하기 위해서는 추가적인 연구가 더욱 진행 되어야한다. 이번 리뷰 논문에서는 이차전지의 개요부터 구성 요소의 소재 및 특성, 기술 동향, 이차전지 기업을 소개하여 이차전지의 전반적인 내용에 대한 이해를 돕고자 한다.

협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구 (The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis)

  • 신창훈;이지원;양한나;최일영
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.19-42
    • /
    • 2012
  • 고객이 상품을 구매하는 패턴이 빠르게 변화하고 있다. 오프라인에서 고객이 직접 상품을 보고, 체험한 후 구매하던 패턴이 TV홈쇼핑, 인터넷 쇼핑 등 고객이 편리한 장소에서 자유롭게 구매하는 방법으로 확산되었다. 이처럼 구매 가능한 상품의 범위는 점점 더 다양해지고 있지만 이로 인하여 고객이 상품을 구매할 때 생기는 번거로움은 더욱 커지고 있다. 오프라인에서는 물건을 직접보고 구매하기 때문에 반품율이 낮은 반면에 온라인 구매 물품은 배송과 환불 등에서 복잡한 일들이 많이 발생한다. 온라인을 통해서 물건을 구매할 때 상품에 대한 사전 정보는 매우 한정적이며 실제로 물건을 구매했을 경우 고객이 생각했던 것과 다를 수 있다. 이러한 결과는 결국 고객의 불만족 및 구매취소로 이어진다. 또한 TV홈쇼핑이나 인터넷 쇼핑 등을 통해서 물건을 구매할 때 고객들은 이미 상품을 구매한 고객의 리뷰에도 관심을 기울이고 있다. 좋은 평가를 받은 상품은 더 많은 매출로 이어질 수 있기 때문에 기업은 이에 관심을 기울일 필요가 있다. 고객의 욕구를 만족시킬 수 있는 적절한 상품을 추천해 주고 이를 구매로 연결시키는 것은 기업의 이윤 창출과 직결되기 때문에 그 중요성이 강조된다. 고객을 위한 추천방법은 베스트셀러기반 추천방법, 인구통계 정보기반 추천방법, 최소질의대상 상품결정방법, 내용필터링기법, 협력필터링기법 등이 존재하며, 이에 대한 많은 연구가 활발하게 진행되고 있다. 그러나 위의 방법들을 신규고객에게 적용하는 것에는 문제가 발생할 수 있다. 신규고객은 상품에 대한 과거 구매이력이 존재하지 않기 때문이다. 이를 해결하기 위한 방안으로 가입 시, 고객의 인구통계적 정보나 선호도에 대한 응답을 유도하는 방법을 활용할 수 있다. 그러나 고객이 이에 대한 번거로움을 느낄 수도 있으며, 불완전한 답변을 하게 되면 추천의 정확도는 감소한다. 최근 이미 상품을 구매한 고객의 리뷰 및 기업에서 추천하는 제품에 의존하는 고객들이 증가하면서 이를 악용하는 사례도 자주 등장한다. 결국 추천에 대한 고객들의 신뢰는 감소하게 될 것이다. 따라서 좀 더 명확한 방식의 추천시스템이 절실하며, 이것이 개선된다면 는 곧 고객들의 신뢰 증가로 이어질 것이다. 본 연구에서는 협력필터링기법과 사회연결망기법의 중심성을 결합한 분석을 시도하였다. 중심성은 신규고객의 선호도를 기존고객들의 데이터를 통하여 유추하기 위하여 활용되는 정보이다. 기존 연구들에서는 기존고객들의 구매 가운데 구매성향이 유사한 고객들의 정보에 초점을 맞추고 있으며 구매성향이 다른 고객들의 정보에 대한 분석은 이루어지고 있지 않다. 그러나 이처럼 구매성향이 서로 다른 고객들의 정보를 활용한다면 추천의 정확성이 더 향상되지 않을까 하는 점을 기반으로 데이터들을 다양한 방식으로 분석하였다. 연구에 사용된 데이터는 미네소타대학의 GroupLens Research Project팀이 협력필터링기법을 통하여 영화를 추천하기 위해 만든 MovieLens의 데이터이다. 이는 1,684편의 영화에 대한 선호도를 943명이 응답한 정보로 총 100,000개의 데이터가 있다. 이를 시간 순으로 구분하여 초기 50,000개의 데이터를 기존고객의 데이터로, 후기 50,000개의 데이터를 신규고객의 데이터로 사용하였다. 이 때, 신규고객과 기존고객은 연구자가 임의로 구분한 것이다. 따라서 신규고객이라고 표현되는 고객의 데이터는 실제로 추천시스템을 통해 정보를 제공받은 고객이라고는 볼 수 없다. 그러나 현실적으로 실제 신규고객의 데이터를 수집하는 것이 쉽지 않기 때문에 전체 고객의 정보를 시간 순으로 구분하고 신규고객으로 분류한 것임을 밝혀둔다. 제시된 추천시스템은 [+]집단 추천시스템, [-]집단 추천시스템, 통합 추천시스템으로 총 3가지이다. [+]집단 추천시스템은 기존의 연구들과 유사한 방식으로 유사도가 높은 고객들을 신규고객의 이웃고객으로 분석하였다. 유사도가 높다는 것은 다른 고객들과 상품 구매에 대한 성향이 유사한 것을 의미한다. 또한 [-]집단 추천시스템은 유사도가 낮고 다른 고객들과 상품의 구매패턴이 반대에 가까운 고객들의 데이터를 활용하였으며, 통합 추천시스템은 [+]집단 추천시스템과 [-]집단 추천시스템을 결합한 방식이다. [+]집단 추천시스템과 [-]집단 추천시스템에서 각각 추천된 영화 가운데 중복되는 영화만을 신규고객에게 추천하는 방식이다. 다양한 방법의 시도를 통하여 적절한 추천시스템을 찾고, 추천시스템의 정확도를 향상시키는데 그 목적이 있다. 활용된 데이터의 분석 결과는 통합 추천시스템이 정확도가 가장 높았으며 [-]집단 추천시스템, [+]집단 추천시스템의 순인 것으로 나타났다. 이는 통합 추천시스템이 가장 효율적일 것이라는 연구자의 추측과 일치하는 결과이다. 각각의 추천시스템은 정확도의 변화를 쉽게 비교할 수 있도록 등고선지도 및 그래프를 이용하여 나타냈다. 연구의 한계점으로는 연구자가 제시한 통합 추천시스템과 [-]집단 추천시스템에 대한 정확도는 향상되었지만 이는 임의로 구분한 기준을 바탕으로 분석하였다는 점이다. 실제 추천된 영화를 바탕으로 신규고객이 영화를 선택 한 것이 아니라 기존고객의 데이터를 임의로 분류하였기 때문이다. 따라서 이는 추천 영화가 실제 고객에 미친 영향이 아니라는 한계가 존재한다. 또한 영화가 아닌 다른 상품에 대해서 이 추천시스템을 적용하였을 경우 추천 정확도에는 차이가 있을 수 있다. 따라서 추천시스템을 적용할 때에는 각 상품 및 고객집단의 특성에 적합한 적용이 필요하다.