• 제목/요약/키워드: 기업리뷰

검색결과 123건 처리시간 0.026초

머신러닝 기반의 기업가치 예측 모형: 온라인 기업리뷰를 활용하여 (Machine Learning based Firm Value Prediction Model: using Online Firm Reviews)

  • 이한준;신동원;김희은
    • 인터넷정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.79-86
    • /
    • 2021
  • 빅데이터 분석의 유용성이 주목을 받으면서 경영학 분야에서도 이를 활용하여 기업의 성과를 예측하고자 하는 다양한 연구들이 진행되고 있다. 이러한 선행연구들은 주로 뉴스 기사나 SNS 등 기업 외부의 자료에 의존하고 있다. 직원의 만족도나 기업에 대한 직원의 인식, 장단점 평가와 같은 기업 내부의 목소리는 기업가치에 대한 잠재적인 영향력에도 불구하고 상대적으로 확보가 어려워 관련 연구가 아직 충분치 못하다. 이에 본 연구에서는 국내 유가증권시장 상장 기업을 대상으로 임직원의 기업리뷰가 기업가치에 미치는 영향을 살펴보고, 이를 기반으로 기업가치를 예측하는 모형을 구축하고자 한다. 이를 위해 온라인 기업리뷰 사이트인 잡플래닛(Jobplanet)에 2014년부터 2019년까지 전·현직원이 남긴 97,216건의 기업리뷰를 수집하고 동 데이터에 근거하여 머신러닝 기반의 예측 모형을 제안하였다. 제안한 모형 중 LSTM 기반 모형의 정확도가 73.2%로 가장 높았고 MAE 또한 0.359로 가장 낮은 오차를 보였다. 본 연구는 국내에서 머신러닝을 활용한 기업가치 연구 분야에 유용한 사례가 될 것으로 기대한다.

IT 제품 테스터 모집 사이트 (IT product tester recruitment site)

  • 장은겸;정준영;한준영;이주용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.147-148
    • /
    • 2021
  • 본 논문에서는 자바 스프링 Mybatis와 Firebase, Ajax, Script, DataBase를 활용해 테스트하길 원하는 IT 제품을 등록하는 기업과 이를 응모를 통해 추첨되어 테스트하고 리뷰를 남겨 기업에 도움을 주고 싶어 하는 일반 사용자를 모집하는 웹 사이트이다. 이 사이트는 자바 스프링 Mybatis를 기반으로 웹을 구성 하였고, 웹페이지에서 처리되는 데이터들은 데이터베이스로 저장된다. 기업이 제품을 등록하면 이를 사용자가 응모하고 관리자가 무작위로 추첨을 하면 해당 상품을 사용자가 받아보고 평가하여 리뷰를 남길 수 있고 기업은 해당 리뷰들을 좋은 점, 개선할 점을 나누어 확인하여 자신들의 제품을 개선할 수 있도록 한다.

  • PDF

온라인 리뷰와 미니멀리즘 (Online Review and Minimalism)

  • 김진화;변현수;이승훈
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2008년도 연합학회학술대회
    • /
    • pp.235-252
    • /
    • 2008
  • 전통적인 상거래 영역에 정보기술을 접목한 전자상거래는 그 규모와 성장면에서 계속적으로 증가하고 있다. 특히 기업과 소비자간 전자상거래를 의미하는 B2C는 그 종류와 규모면에서 계속 성장하고 있다. 본 연구에서는 기업과 소비간의 거래에 있어서 제품 구매에 중요한 영향을 미치는 온라인 리뷰의 정보제공능력에 대해 연구하고자 한다. 온라인리뷰가 제공하는 정보의 양이 증가할수록 이는 처리해야 하는 판매자와 구매자에게는 부담이 된다. 기존의 온라인 리뷰에 대한 연구는 사용자의 구매 경험을 전달하는 방법에 주력하여 온라인 리뷰의 형태와 전달효과 등에 대한 연구가 부족하였다. 따라서 본 연구에서는 효과적으로 정보를 전달하기 위해 필요한 온라인 리뷰의 형태와 정보 전달 등에 대해 연구하고자 한다.

  • PDF

온라인 리뷰 콘텐츠와 언어 스타일이 리뷰 유용성에 미치는 영향 (The Impact of Online Review Content and Linguistic Style on Review Helpfulness)

  • 이가은;엄금철
    • 지식경영연구
    • /
    • 제23권2호
    • /
    • pp.253-276
    • /
    • 2022
  • 온라인 리뷰는 소비자의 구매 의사결정에 중요한 역할을 하기 때문에 소비자의 지각된 리뷰 유용성에 영향을 미치는 리뷰 요인을 확인하는 것이 필요하다. 그러나 온라인 리뷰의 유용성에 대한 대부분의 기존 연구는 주로 리뷰 및 리뷰어 속성과 같은 정량적 요인에 중점을 두고 있다. 최근 연구에서는 리뷰 콘텐츠과 언어 스타일이 소비자의 구매 의사결정에 미치는 영향을 조사했다. 또한, 소비자가 의사결정 과정에서 리뷰를 평가할 때 추가적으로 리뷰 텍스트 속성들을 고려해야 한다고 주장하고 있다. 따라서 본 연구는 온라인 리뷰 맥락에서 리뷰 콘텐츠과 언어 스타일이 리뷰 유용성에 미치는 영향을 조사하고자 한다. 추가적으로 리뷰어의 전문성이 리뷰 콘텐츠 및 언어 스타일과 리뷰 유용성 간의 영향관계를 조절하는지 여부를 조사했다. 연구결과 긍정적인 리뷰 콘텐츠는 리뷰 유용성에 부정적인 영향을 미치고, 부정적인 리뷰 콘텐츠와 언어적 스타일은 리뷰 유용성에 긍정적인 영향을 미치는 것으로 나타났다. 리뷰어의 전문성은 부정적인 리뷰 콘텐츠와 언어 스타일이 리뷰 유용성에 미치는 영향을 완화시키는 것으로 나타났다. 본 연구결과는 온라인 전자상거래 기업이 리뷰 유용성에 영향을 미치는 요인을 파악하고 이를 마케팅 전략에 반영하여 기업 매출 성장을 달성하는데 시사점을 제공할 수 있다.

머신러닝 기반의 기업 리뷰 다중 분류: 부분 문법 적용을 중심으로 (Multi-Label Classification for Corporate Review Text: A Local Grammar Approach)

  • 백혜연;장영균
    • 경영정보학연구
    • /
    • 제25권3호
    • /
    • pp.27-41
    • /
    • 2023
  • 최근 많은 분야에서 기계학습에 대한 연구가 활발히 진행되고 있는데, 상당수의 연구들이 학습 모델의 성능을 개선하는 최신 방법론을 제시하고 있다. 본 연구에서는 방법론의 개발 못지않게 기계학습에 투입되는 훈련용 데이터의 '품질'을 개선하는 것 역시 중요하다는 점에 착안하여, 코퍼스 분석에서 자주 사용되는 '부분 문법' 처리 프로세스를 통해 훈련 데이터의 품질을 향상시키는 방법을 제시한다. 우리나라 100대 기업에 근무하는 재직자들이 채용플랫폼에 게시하는 방대한 양의 비정형 기업 리뷰 텍스트 데이터를 수집하고, 데이터 품질을 부분 문법 프로세스로 개선한 후, 부분 문법이 적용된 분류 모델이 적용되지 않은 모델보다 분류 성능이 우수함을 확인하였다. 분류 카테고리는 직원 몰입의 5가지 요인으로 상정하였는데, 국내 직장인들이 기업 리뷰가 각 유형별로 빈도에 차이가 있는지를 분석하였다. 추가로 리뷰 양상이 코로나 팬데믹 전후로 어떠한 변화가 있었는지도 분석하였다. 본 연구를 통해 국내 직장인들의 생생한 일터 경험들을 자동적으로 식별하고 분류하여, 이직을 포함한 주요한 조직문화 현상의 행태와 유발 원인 등을 유추해 볼 수 있는 근거를 제공한다.

게임 유용성 평가에 미치는 요인에 관한 연구: 스팀(STEAM) 게임 리뷰데이터 분석 (A Study of Factors Influencing Helpfulness of Game Reviews: Analyzing STEAM Game Review Data)

  • 강하나;용혜련;황현석
    • 한국게임학회 논문지
    • /
    • 제17권3호
    • /
    • pp.33-44
    • /
    • 2017
  • 인터넷 환경의 발달로 소비자들 사이에 상품정보에 대한 의견이 교환되기 시작하면서 다양한 형식의 온라인 리뷰들이 급속도로 생성되고 있다. 이러한 추세에 따라, 기업들은 온라인 리뷰들을 분석하여 마케팅, 세일즈, 제품개발 등의 다양한 기업 활동에서 그 결과를 활용하려는 노력을 진행하고 있다. 그러나 대표적인 경험재인 '게임'과 관련된 산업에서의 온라인 리뷰에 대한 연구는 매우 부족한 실정이다. 이에 본 연구는 머신러닝 모델을 활용하여 스팀(STEAM)게임의 커뮤니티 데이터를 분석하였다. 이를 통해 타 사용자의 게임 리뷰를 유용하다고 판단하는데 영향을 미치는 요인을 분석하고, 리뷰의 유용성을 예측하는데 있어 가장 우수한 성능을 보인 모델과 변수들을 도출하여 사용자의 충성도와 사용성을 증대시키기 위한 제안을 하고자 한다.

온라인 고객 리뷰의 분류 항목별 차이 분석: 채널, 제품속성, 가격을 중심으로 (Analysis of Differences between On-line Customer Review Categories: Channel, Product Attributes, and Price Dimensions)

  • 양소영;김형수;김영걸
    • Asia Marketing Journal
    • /
    • 제10권2호
    • /
    • pp.125-151
    • /
    • 2008
  • 기업과 소비자 간의 온라인 커뮤니케이션 활성화로 인하여 기업과 소비자 모두 제품에 대한 경험과 지식을 공유하는 온라인 고객 리뷰에 많은 관심을 기울이고 있다. 본 연구에서는 내용 분석법을 통해 온라인 소비자 리뷰들을 맥락단위로 분류하고 분류항목을 도출함으로써 채널(자사홈페이지/쇼핑몰), 제품속성(탐색재/경험재), 가격(고가/저가)에 따른 차이 분석을 시행하였다. 분류 항목의 도출은 ACSI 모델의 구성 항목들을 근간으로 실제 리뷰의 반복적 분류를 통해 이루어졌으며 총 3단계로 나누어졌다. 1단계에서는 일단 제품과 서비스로 분류하고, 2단계에서는 제품에 대해서 기능, 디자인, 가격, 구매동기, 제안/사용팁, 그리고 추천/재구매를, 그리고 서비스에 대해서 AS/업그레이드, 배송/기타제조사와 유통사 등 총 8개 분류 항목을 도출하였으며, 3단계에서는 실제 제품 리뷰 내용을 바탕으로 2단계 분류 항목의 세부항목으로 작성되었다. 분류 항목별 차이 분석 결과, 총 8개의 분류 항목에서 모두 유의한 차이점을 보였는데, 특히 채널별 차이를 보기 위해 분석한 홈페이지와 쇼핑몰에서의 리뷰 내용이 가장 두드러진 차이를 보이고 있었다. 한편, 쇼핑몰의 특성을 나타내는 가격과 배송/기타 서비스 항목을 제외하고는 맥락단위의 개수가 홈페이지에서 더 많이 나타남으로써 기업 홈페이지 상의 소비자 리뷰가 쇼핑몰 상의 소비자 리뷰보다 더욱 상세하다는 것을 알 수 있었다. 제품에 대한 만족도 역시 홈페이지의 리뷰에서 더 큰 것으로 나타났으며, 탐색재와 경험재로 나누어 보았을 때 디자인, 구매동기, 추천/재구매, AS/업그레이드 서비스, 그리고 배송/기타 서비스 항목에서 서로간의 차이가 있었으나, 전반적인 만족도의 차이는 없었다. 또한, 가격별로 보았을 때는 디자인, 가격, AS/업그레이드 서비스에서 고가와 저가의 차이를 볼 수 있었으나 전반적인 만족도의 차이는 없었다.

  • PDF

기업 리뷰 정보를 활용한 주가 방향 예측 모델 비교 분석 (A Comparative Analysis of the Prediction Models for the Direction of Stock Price Using the Online Company Reviews)

  • 임용택;임희석
    • 한국융합학회논문지
    • /
    • 제11권8호
    • /
    • pp.165-171
    • /
    • 2020
  • 텍스트 마이닝을 활용한 주가 방향 예측 연구에서는 대부분 뉴스, SNS 데이터를 사용하고 있다. 하지만 뉴스, SNS 데이터로부터 기업에 대한 솔직하고 생생한 정보는 얻기 어렵다는 약점이 존재한다. 본 논문에서는 실제 근무 경험이 있는 내부 직원의 기업 리뷰를 반영하여, 종업원 만족도를 활용한 주가의 방향성을 예측하는 문제를 다룬다. 머신러닝 모델별 성능평가를 통해 예측 정확도를 비교, 분석한 결과 종업원의 기업 리뷰 데이터를 추가로 이용한 주가 방향 예측 모델은 그렇지 않은 모델 대비 뛰어난 분류 성과를 보였다. 본 연구는 금융 공학에 자연어처리기술을 활용한 융합 연구로서 주가 예측 분야에서 종업원 만족도를 활용한 기존에 없던 새로운 방법론을 추구하였다. 실무적으로 주가 방향 예측 분야에 유용한 정보를 제공할 것으로 기대된다.

사전기반의 한국어 상품 리뷰 의견표현 자질 추출 및 분류시스템 (Dictionary-Based Opinion Features Extraction and Classification of Korean Product Reviews)

  • 육상근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.631-634
    • /
    • 2008
  • 인터넷을 이용한 사람들의 사회 참여가 확대되면서 다양한 의견(Opinion)들이 급속도로 증가하고 있으며 이러한 의견을 분석하여 유용한 정보로 활용하기 위한 연구가 활발히 진행되고 있다. 그 중에서도 상품리뷰는 기업에서 연구, 개발, 마케팅의 주요 자료로 사용되고 있으며 사용자가 상품의 구매를 결정하는 중요한 요인 중 하나로 작용하고 있다. 본 논문에서는 한국어로 이루어진 상품 리뷰를 분석하여 의견 자질(Feature)을 추출하고 분류(Classification)하는 시스템을 설계하고 구현하였다. 한글 의견 자질 추출을 위하여 먼저 한글 상품 리뷰를 분석하여 의견 사전을 구축하였다. 의견 사전으로는 의견 자질과 의견 어휘, 독립의견어휘, 의견 숙어, 부정어 등의 각기 다른 세부 사전을 구축하여 리뷰 분석 시 단계적으로 적용하여 정확도를 높일 수 있도록 설계하였다. 이렇게 구현된 시스템을 평가하기 위하여 각기 다른 3개의 도메인에서 실제 한국어 리뷰를 수집하여 실험을 수행하였으며 자질 추출에서는 평균 78.86% 정확률, 61.41% 재현율을, 극성 분류에서는 평균 69.46% 정확률, 42.26% 재현율을 나타냈다.