• Title/Summary/Keyword: 기업데이터 분석

Search Result 2,116, Processing Time 0.037 seconds

Research on Dispersion Prediction Technology and Integrated Monitoring Systems for Hazardous Substances in Industrial Complexes Based on AIoT Utilizing Digital Twin (디지털트윈을 활용한 AIoT 기반 산업단지 유해물질 확산예측 및 통합관제체계 연구)

  • Min Ho Son;Il Ryong Kweon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.484-499
    • /
    • 2024
  • Purpose: Recently, due to the aging of safety facilities in national industrial complexes, there has been an increase in the frequency and scale of safety accidents, highlighting the need for a shift toward a prevention-centered disaster management paradigm and the establishment of a digital safety network. In response, this study aims to provide an information system that supports more rapid and precise decision-making during disasters by utilizing digital twin-based integrated control technology to predict the spread of hazardous substances, trace the origin of accidents, and offer safe evacuation routes. Method: We considered various simulation results, such as surface diffusion, upper-level diffusion, and combined diffusion, based on the actual characteristics of hazardous substances and weather conditions, addressing the limitations of previous studies. Additionally, we designed an integrated management system to minimize the limitations of spatiotemporal monitoring by utilizing an IoT sensor-based backtracking model to predict leakage points of hazardous substances in spatiotemporal blind spots. Results: We selected two pilot companies in the Gumi Industrial Complex and installed IoT sensors. Then, we operated a living lab by establishing an integrated management system that provides services such as prediction of hazardous substance dispersion, traceback, AI-based leakage prediction, and evacuation information guidance, all based on digital twin technology within the industrial complex. Conclusion: Taking into account the limitations of previous research, we used digital twin-based AI analysis to predict hazardous chemical leaks, detect leakage accidents, and forecast three-dimensional compound dispersion and traceback diffusion.

A Study on Developing a Web Care Model for Audiobook Platforms Using Machine Learning (머신러닝을 이용한 오디오북 플랫폼 기반의 웹케어 모형 구축에 관한 연구)

  • Dahoon Jeong;Minhyuk Lee;Taewon Lee
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.337-353
    • /
    • 2024
  • The purpose of this study is to investigate the relationship between consumer reviews and managerial responses, aiming to explore the necessity of webcare for efficiently managing consumer reviews. We intend to propose a methodology for effective webcare and to construct a webcare model using machine learning techniques based on an audiobook platform. In this study, we selected four audiobook platforms and conducted data collection and preprocessing for consumer reviews and managerial responses. We utilized techniques such as topic modeling, topic inconsistency analysis, and DBSCAN, along with various machine learning methods for analysis. The experimental results yielded significant findings in clustering managerial responses and predicting responses to consumer reviews, proposing an efficient methodology considering resource constraints and costs. This research provides academic insights by constructing a webcare model through machine learning techniques and practical implications by suggesting an efficient methodology, considering the limited resources and personnel of companies. The proposed webcare model in this study can be utilized as strategic foundational data for consumer engagement and providing useful information, offering both personalized responses and standardized managerial responses.

High Speed Rail Station Distric Using Entropy Model Study to Estimate the Trip Distribution (엔트로피 모형을 활용한 고속철도 역세권 통행분포 추정에 관한 연구)

  • Cho, Hangung;Kim, Sigon;Kim, Jinhowan;Jeon, Sangmin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.679-686
    • /
    • 2012
  • KTX step 1 April 2004, after the opening, the second phase of the project was opened in November 2010. High-speed rail after the opening and continue to increase the demand of high-speed rail, Have the speed of competitive advantage compared too the means of transportation. The opening of these high-speed rail has led to changes of the move, the company's position, and the spatial structure of the population of reorganization, such as the social, economic, transportation. In this study, survey data using the High Speed Rail Station EMME/2 of the program to take advantage of the 2-Dimentional Blancing trip distribution to investigate the passage through the trip distribution by the estimation of the parameters of the model to estimate the distribution of the means of access and high-speed rail station to reproduce and Analysis of the results by means of access parameters (${\theta}$) autos 0.0395, buses 0.0390, subway 0.0650, taxi 0.0415, the frequency distribution (Trip Length Frequency Distribution: TLFD) were analyzed survey data value model with the results of comparing $R^2$ cars analysis and model values similar survey data 0.909 bus 0.923, subway 0.745 to 0.922, taxi, F test P value analysis is smaller than 0.05 at the 95% confidence level as a note that was judged to have been. Trip frequency distribution analysis, but in the future, set the unit to 5km-trip frequency distribution middle zone Units from small zone units (administrative district) segmentation research is needed, and can reflect the trip distance 0~5 km interval combined function to take advantage of the gravity model and the 3-Dimentional Blancing applied research is needed to be considered.

Implementation of Reporting Tool Supporting OLAP and Data Mining Analysis Using XMLA (XMLA를 사용한 OLAP과 데이타 마이닝 분석이 가능한 리포팅 툴의 구현)

  • Choe, Jee-Woong;Kim, Myung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.154-166
    • /
    • 2009
  • Database query and reporting tools, OLAP tools and data mining tools are typical front-end tools in Business Intelligence environment which is able to support gathering, consolidating and analyzing data produced from business operation activities and provide access to the result to enterprise's users. Traditional reporting tools have an advantage of creating sophisticated dynamic reports including SQL query result sets, which look like documents produced by word processors, and publishing the reports to the Web environment, but data source for the tools is limited to RDBMS. On the other hand, OLAP tools and data mining tools have an advantage of providing powerful information analysis functions on each own way, but built-in visualization components for analysis results are limited to tables or some charts. Thus, this paper presents a system that integrates three typical front-end tools to complement one another for BI environment. Traditional reporting tools only have a query editor for generating SQL statements to bring data from RDBMS. However, the reporting tool presented by this paper can extract data also from OLAP and data mining servers, because editors for OLAP and data mining query requests are added into this tool. Traditional systems produce all documents in the server side. This structure enables reporting tools to avoid repetitive process to generate documents, when many clients intend to access the same dynamic document. But, because this system targets that a few users generate documents for data analysis, this tool generates documents at the client side. Therefore, the tool has a processing mechanism to deal with a number of data despite the limited memory capacity of the report viewer in the client side. Also, this reporting tool has data structure for integrating data from three kinds of data sources into one document. Finally, most of traditional front-end tools for BI are dependent on data source architecture from specific vendor. To overcome the problem, this system uses XMLA that is a protocol based on web service to access to data sources for OLAP and data mining services from various vendors.

A Study on the Strategic Use of an IMC Planning Model for the Distribution Industry (유통업 IMC 기획모델의 전략적 활용에 관한 연구)

  • Mo, Sun-Jong;Song, In-Am
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.113-145
    • /
    • 2008
  • Marketing for the distribution industry is making an ongoing progress in the changes of customers, the competitive environment, and the internal marketing environment. Integrated marketing communication activities are required for the enhancement of efficiency in the market.oriented activities. In this study, IMC is defined as "a notion that a market oriented business integrated marketing communication means, conducting and evaluating marketing activities with consistent messages in order to communicate with customers based on databases." In this study, an IMC planning model for the improvement of marketing efficiency in the distribution industry was derived from a pilot study. This model may be broken down into the following phases: IMC goals setting, situational analysis (customer analysis, competition analysis and company analysis), customer data analysis, contact management, budgeting, the establishment of an IMC strategy, the IMC mix and execution, an evaluation system, and feedback. In consideration of the characteristics of the distribution industry, this study was accompanied by a vocational study on IMC means employed by, in particular, department stores and other distributors such as: advertising, sales promotion, sales promotion advertising, direct marketing, public relations, personal selling, the Internet, mobile, visual merchandising, words of mouth. In addition, this study also covered the correlation among variables such as IMC activities of distributors, the process of forming customer's brand attitudes, brand loyalty and repurchase intention. This research would enhance the utilization of IMC. The analysis on customer's brand attitudes toward the IMC activities of distributors requires the simultaneous consideration of how they are linked to purchase as well as their attitudes toward both distributors and stores. The formation of brand loyalty and repurchase intention is related to the integration of marketing communication and the maintenance of consistency in contents, which requires integrated brand communication (IBC) strategies. IBC is a concept of using IMC means to manage the brand in a continuing and consistent manner and measuring their effect, which is a process to establish enterprise.level brand identity and maximize brand loyalty and repurchase intention by integrating IMC means. For an empirical analysis in this study, an online questionnaire survey was conducted among those department store customers from 20's to 50's who reside either in the Seoul and Gyeonggi areas and have made purchase at department stores. In this study, the research model consisted of four theoretical variables: IMC activities, IMC attitudes, brand loyalty, and repurchase intention, on which variables a pilot study was conducted. A number of hypotheses were constructed on the relations between IMC activities and IMC attitudes, between IMC attitudes and repurchase intention, and between brand loyalty and repurchase intention. The test of the hypotheses may be summarized as follows: Firstly, the test of the hypothesis concerning the relation between IMC attitudes and IMC activities - advertising, sales promotion, direct marketing, public relations, personal selling, the Web, mobile, visual merchandising, and word of mouth - indicates that advertising, sales promotion, direct marketing, public relations, personal selling, mobile, visual merchandising, and word of mouth have significant impact on IMC activities. In addition to the result similar to those of previous studies that such marketing communication means as word of mouth, advertising, personal selling and sales promotion, in particular, play very important roles, a notable finding of this study is that visual merchandising performed by department stores is shown to have very significant impact on IMC activities. On a separate note, it is also noteworthy that Internet marketing activities engaged by department stores are not shown to have significant impact on IMC attitudes. Secondly, the test of the hypothesis on the relation between IMC attitudes and brand loyalty attests that IMC attitudes for the distribution industry significantly affect brand loyalty. Thirdly, the test of the hypothesis concerning the relation between IMC attitudes and repurchase intention confirms that IMC attitudes for the distribution industry significantly affect repurchase intention. Fourthly, the test of the hypothesis concerning the relation between brand loyalty and repurchase intention indicates that brand loyalty significantly affect repurchase intention. A comprehensive view of these findings points to the conclusion that the IMC activities for the distribution industry do affect IMC attitudes, brand loyalty, and repurchase intention.

  • PDF

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining (연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.127-141
    • /
    • 2017
  • Advances in Internet technologies and the proliferation of mobile devices enabled consumers to approach a wide range of goods and services, while causing an adverse effect that they have hard time reaching their congenial items even if they devote much time to searching for them. Accordingly, businesses are using the recommender systems to provide tools for consumers to find the desired items more easily. Association Rule Mining (ARM) technology is advantageous to recommender systems in that ARM provides intuitive form of a rule with interestingness measures (support, confidence, and lift) describing the relationship between items. Given an item, its relevant items can be distinguished with the help of the measures that show the strength of relationship between items. Based on the strength, the most pertinent items can be chosen among other items and exposed to a given item's web page. However, the diversity of the measures may confuse which items are more recommendable. Given two rules, for example, one rule's support and confidence may not be concurrently superior to the other rule's. Such discrepancy of the measures in distinguishing one rule's superiority from other rules may cause difficulty in selecting proper items for recommendation. In addition, in an online environment where a web page or mobile screen can provide a limited number of recommendations that attract consumer interest, the prudent selection of items to be included in the list of recommendations is very important. The exposure of items of little interest may lead consumers to ignore the recommendations. Then, such consumers will possibly not pay attention to other forms of marketing activities. Therefore, the measures should be aligned with the probability of consumer's acceptance of recommendations. For this reason, this study proposes a model-based approach to combine those measures into one unified measure that can consistently determine the ranking of recommended items. A regression model was designed to describe how well the measures (independent variables; i.e., support, confidence, and lift) explain consumer's acceptance of recommendations (dependent variables, hit rate of recommended items). The model is intuitive to understand and easy to use in that the equation consists of the commonly used measures for ARM and can be used in the estimation of hit rates. The experiment using transaction data from one of the Korea's largest online shopping malls was conducted to show that the proposed model can improve the hit rates of recommendations. From the top of the list to 13th place, recommended items in the higher rakings from the proposed model show the higher hit rates than those from the competitive model's. The result shows that the proposed model's performance is superior to the competitive model's in online recommendation environment. In a web page, consumers are provided around ten recommendations with which the proposed model outperforms. Moreover, a mobile device cannot expose many items simultaneously due to its limited screen size. Therefore, the result shows that the newly devised recommendation technique is suitable for the mobile recommender systems. While this study has been conducted to cover the cross-selling in online shopping malls that handle merchandise, the proposed method can be expected to be applied in various situations under which association rules apply. For example, this model can be applied to medical diagnostic systems that predict candidate diseases from a patient's symptoms. To increase the efficiency of the model, additional variables will need to be considered for the elaboration of the model in future studies. For example, price can be a good candidate for an explanatory variable because it has a major impact on consumer purchase decisions. If the prices of recommended items are much higher than the items in which a consumer is interested, the consumer may hesitate to accept the recommendations.

Gender Roles, Accessibility, and Gendered Spatiality (성역할, 접근성, 그리고 젠더화된 공간성)

  • Kim, Hyun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.5
    • /
    • pp.808-834
    • /
    • 2007
  • This study attempts to elucidate manifold dimensions of gendered accessibility experiences. How gender roles(household responsibilities) differentiate accessibility experiences between women and men is explored through the comparison of married dual-earner couples' parental status, using the US Portland activity-travel diary dataset with GIS-based geocomputation results of(time-geography based) space-time accessibility. First, this study shows how gender division of labor within the household still permeates current society, despite the widespread belief of the social change toward a gender-egalitarian society. Then, the study pays special attention to the way gender roles structure individual accessibility experiences of women and men differently, and, in turn, the way such accessibility experiences take a form of gendered spatiality. Gendered spatiality is examined through the analysis of accessibility space as well as activity space in order to ascertain women's home-attached and spatially entrapped characteristics. More household responsibilities throughout a day and, even more, the time constraint of picking up children at the daycare centers after work lead women's possible activity space to be more home-centered. The analysis of the spatio-temporal context of accessibility space makes gendered spatiality visible. However, the findings suggest that behavioral outcomes should be understood with an explicit awareness of constraints individuals face. It is because the revealed activity spaces can be not only an outcome of constraint but also an outcome of choice. Behavioral outcomes should not be treated as a straightforward expression of the level of constraints. It is problematic to expect that behavioral outcomes directly mirror the level of constraints. It is also problematic to suppose that the level of constraints can be straightforwardly elicited from revealed behavioral outcomes.

A Study about the Effect of Team Members' Entrepreneurial Intention, Diversity, and Supporting Activities of Assistants on Team Learning Effectiveness and Educational Satisfaction in the Entrepreneurial Education of University Students through Team Learning (팀 학습을 통한 대학생의 창업교육에 있어서 팀원의 창업의지, 다양성 및 조력자의 지원활동이 팀 학습 유효성 및 창업교육 만족도에 미치는 영향에 관한 연구)

  • Choi, Joong Seog
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.4
    • /
    • pp.159-174
    • /
    • 2017
  • The purpose of this study was to examine whether the entrepreneurship education through team learning positively influences the effectiveness of team learning and the satisfaction of entrepreneurship curriculum. To do this, we analyzed the questionnaire data of 149 students who took the entrepreneurship course that was conducted by the team learning method focused on problem solving task among the entrepreneurship courses opened in the venture autonomous major. First, we examined the effect of team learning effectiveness and entrepreneurial education satisfaction on the effectiveness of the team learning by individual's intention for startup, diversity of team members, and supporting activities of assistants as independent variables. For this, hierarchical regression analysis was conducted to examine whether independent variables influenced the effectiveness of team learning, and whether the effectiveness of team learning mediates between these independent variables and entrepreneurial education satisfaction. The results of this study support the hypothesis that supporting activities of assistants will influence team learning effectiveness. However, the hypothesis that individual's intention for startup or team diversity influences team learning effectiveness was rejected. On the other hand, the results of the regression analysis show that individual's intention for startup has a significant effect on the satisfaction of entrepreneurship education. In addition, the effectiveness of team learning was found to be influential on the educational satisfaction, and it was verified that the effectiveness of team learning was mediating between the supporting activities of assistants and the satisfaction of entrepreneurship education. Especially, as a result of the hierarchical regression analysis, it was found that the significance of the supporting activities of assistants decreased remarkably. This suggests that the mediating path that affects the satisfaction of entrepreneurship education is very meaningful through the effectiveness of the team learning although the supporting activities of assistants are partially mediated. As a result of this study, it was found that the supporting activities of assistants are important in the team learning entrepreneurship education and it is also confirmed that the individual's intention for startup is also important. Especially, supporting activities of assistants were found to be an important factor affecting the satisfaction of entrepreneurship education through the effectiveness of team learning. Therefore, I think that it is essential to designing a practical education course that meets individual's intention for startup in the entrepreneurship education of university students and networking with the participation of internal and external experts or entrepreneurs. In addition, I think that it is necessary to think more thoughtfulness about the composition of team members in the team learning, and to provide more meticulous support to the effectiveness of the team learning.

  • PDF