• Title/Summary/Keyword: 기업데이터 분석

Search Result 2,116, Processing Time 0.033 seconds

Web Attack Classification via WAF Log Analysis: AutoML, CNN, RNN, ALBERT (웹 방화벽 로그 분석을 통한 공격 분류: AutoML, CNN, RNN, ALBERT)

  • Youngbok Jo;Jaewoo Park;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.587-596
    • /
    • 2024
  • Cyber Attack and Cyber Threat are getting confused and evolved. Therefore, using AI(Artificial Intelligence), which is the most important technology in Fourth Industry Revolution, to build a Cyber Threat Detection System is getting important. Especially, Government's SOC(Security Operation Center) is highly interested in using AI to build SOAR(Security Orchestration, Automation and Response) Solution to predict and build CTI(Cyber Threat Intelligence). In this thesis, We introduce the Cyber Threat Detection System by analyzing Network Traffic and Web Application Firewall(WAF) Log data. Additionally, we apply the well-known TF-IDF(Term Frequency-Inverse Document Frequency) method and AutoML technology to classify Web traffic attack type.

The Structural Relationship among Leader-Member Exchange (LMX), Employee Engagement, and Job Performance of Organizational Members: Conditional Indirect Effect of Psychological Empowerment (조직구성원의 리더-구성원 교환관계(LMX), 직원몰입, 직무성과 간의 구조적 관계: 심리적 임파워먼트의 조건부 간접효과)

  • Su-jin Lee;Mi Hwa Kim
    • Journal of Practical Engineering Education
    • /
    • v.16 no.5_spc
    • /
    • pp.757-772
    • /
    • 2024
  • This study examines the effects of LMX on Job Performance, mediated by Employee Engagement and moderated by Psychological Empowerment. A survey of 349 domestic workers was analyzed, revealing that LMX negatively impacted Employee Engagement, and its direct effect on Job Performance was insignificant. Employee Engagement positively influenced Job Performance and significantly mediated the LMX-Job Performance relationship. Additionally, Psychological Empowerment moderated this mediation. Based on these findings, HRD implications were discussed, along with limitations and suggestions for future research.

A Correlation Analysis between International Oil Price Fluctuations and Overseas Construction Order Volumes using Statistical Data (통계 데이터를 활용한 국제 유가와 해외건설 수주액의 상관성 분석)

  • Park, Hwan-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.273-284
    • /
    • 2024
  • This study investigates the impact of international oil price fluctuations on overseas construction orders secured by domestic and foreign companies. The analysis employs statistical data spanning the past 20 years, encompassing international oil prices, overseas construction orders from domestic firms, and new overseas construction orders from the top 250 global construction companies. The correlation between these variables is assessed using correlation coefficients(R), determination coefficients(R2), and p-values. The results indicate a strong positive correlation between international oil prices and overseas construction orders. The correlation coefficient between domestic overseas construction orders and oil prices is found to be 0.8 or higher, signifying a significant influence. Similarly, a high correlation coefficient of 0.76 is observed between oil prices and new orders from leading global construction companies. Further analysis reveals a particularly strong correlation between oil prices and overseas construction orders in Asia and the Middle East, potentially due to the prevalence of oil-related projects in these regions. Additionally, a high correlation is observed between oil prices and orders for industrial facilities compared to architectural projects. This suggests an increase in plant construction volumes driven by fluctuations in oil prices. Based on these findings, the study proposes an entry strategy for navigating oil price volatility and maintaining competitiveness in the overseas construction market. Key recommendations include diversifying project locations and supplier bases; utilizing hedging techniques for exchange rate risk management, adapting to local infrastructure and market conditions, establishing local partnerships and securing skilled local labor, implementing technological innovations and digitization at construction sites to enhance productivity and cost reduction The insights gained from this study, coupled with the proposed overseas expansion strategies, offer valuable guidance for mitigating risks in the global construction market and fostering resilience in response to international oil price fluctuations. This approach is expected to strengthen the competitiveness of domestic and foreign construction firms seeking success in the international arena.

Development of a new Model and Methodology for the Analysis of the Performance Evaluation of G2B Systems in e-government: EEM (전자정부 G2B 시스템의 성과평가 분석을 위한 새로운 평가 모델 및 방법론 개발)

  • Lim, Gyoo-Gun;Lee, Jae-Kyu;Lee, Dae-Chul
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.269-289
    • /
    • 2008
  • It is very difficult problem to estimate and evaluate the performance of e-government system which scope and size are large and its effectiveness can not be seen shortly but reveals after several years. It is because the previous offline processes can not be transformed to online ones fully and shortly. For such e-transformation cases, the performance evaluation model should be adjusted and modified gradually as time passes. This paper propose new EEM(E-transformation Evaluation Model) model and methodology to evaluate G2B system that is one of large e-government project. EEM model can derive monetary value of e-transformatized business process areas(online areas). It also estimate the expected effect of offline area that is not yet transformed to online. EEM model consists of standard model, verification model and estimation model with some variables such as evaluation year, evaluation area and data type. By using survey data and database data together it can validate the correctness of the model and derive the effect of the system introduction. This paper also propose EEM evaluation methodology consisting of 5 stages and 10 sub processes to evaluate online and offline effect efficiently. To show the usefulness of this study, we evaluate the performance of Korea G2B system named KONEPS which is famous as a successful e-government case in the world by using the proposed model and methodology. The proposed model and methodology can be applied to different similar areas including e-government projects and large scale information system introduction in private sectors. This study can be also used for establishing appropriate policies about e-government project and informatization issues.

The Development of a Web-based Realtime Monitoring System for Facility Energy Uses in Forging Processes (단조공정에서 설비 에너지 사용에 대한 웹 기반 실시간 모니터링 시스템 개발)

  • Hwang, Hyun-suk;Seo, Young-won;Kim, Tae-yeon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • Due to global warming and increased energy costs around the world, interests of energy saving and efficiency have been increased. In particular, forging factories need methods to save energy and increase productivity because of needing amounts of energy uses. To solve the problem, we propose a system, which includes collection, monitoring, and analysis process, to monitor energy uses each facility in realtime based on the IoT devices. This system insists of worksheets management, facility/energy management, realtime monitoring, history search, data analysis through connecting with existed ERP/MES Systems in manufacturing factories. The energy monitoring process is to present used energy collected from IoT devices connected with installed gasmeter and wattmeter each facility. This system provide the change of energy uses, usage fee, energy conversion, and green gas information in realtime on Web and mobile devices. This system will be enhanced with energy saving technology by analyzing constructed big data of energy uses. We can also propose a method to increase productivity by integrating this system with functions of digitalized worksheets and optimized models for production process.

A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem (온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구)

  • Qinglong Li;Shibo Cui;Byunggyu Shin;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.51-75
    • /
    • 2021
  • Global e-commerce websites offer personalized recommendation services to gain sustainable competitiveness. Existing studies have offered personalized recommendation services using quantitative preferences such as ratings. However, offering personalized recommendation services using only quantitative data has raised the problem of decreasing recommendation performance. For example, a user gave a five-star rating but wrote a review that the user was unsatisfied with hotel service and cleanliness. In such cases, has problems where quantitative and qualitative preferences are inconsistent. Recently, a growing number of studies have considered review data simultaneously to improve the limitations of existing personalized recommendation service studies. Therefore, in this study, we identify review and rating mismatches and build a new user profile to offer personalized recommendation services. To this end, we use deep learning algorithms such as CNN, LSTM, CNN + LSTM, which have been widely used in sentiment analysis studies. And extract sentiment features from reviews and compare with quantitative preferences. To evaluate the performance of the proposed methodology in this study, we collect user preference information using real-world hotel data from the world's largest travel platform TripAdvisor. Experiments show that the proposed methodology in this study outperforms the existing other methodologies, using only existing quantitative preferences.

A Study on the Drug Classification Using Machine Learning Techniques (머신러닝 기법을 이용한 약물 분류 방법 연구)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.8-16
    • /
    • 2024
  • This paper shows the system of drug classification, the goal of this is to foretell the apt drug for the patients based on their demographic and physiological traits. The dataset consists of various attributes like Age, Sex, BP (Blood Pressure), Cholesterol Level, and Na_to_K (Sodium to Potassium ratio), with the objective to determine the kind of drug being given. The models used in this paper are K-Nearest Neighbors (KNN), Logistic Regression and Random Forest. Further to fine-tune hyper parameters using 5-fold cross-validation, GridSearchCV was used and each model was trained and tested on the dataset. To assess the performance of each model both with and without hyper parameter tuning evaluation metrics like accuracy, confusion matrices, and classification reports were used and the accuracy of the models without GridSearchCV was 0.7, 0.875, 0.975 and with GridSearchCV was 0.75, 1.0, 0.975. According to GridSearchCV Logistic Regression is the most suitable model for drug classification among the three-model used followed by the K-Nearest Neighbors. Also, Na_to_K is an essential feature in predicting the outcome.

A Study on the Research Trends in Fintech using Topic Modeling (토픽 모델링을 이용한 핀테크 기술 동향 분석)

  • Kim, TaeKyung;Choi, HoeRyeon;Lee, HongChul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.670-681
    • /
    • 2016
  • Recently, based on Internet and mobile environments, the Fintech industry that fuses finance and IT together has been rapidly growing and Fintech services armed with simplicity and convenience have been leading the conversion of all financial services into online and mobile services. However, despite the rapid growth of the Fintech industry, few studies have classified Fintech technologies into detailed technologies, analyzed the technology development trends of major market countries, and supported technology planning. In this respect, using Fintech technological data in the form of unstructured data, the present study extracts and defines detailed Fintech technologies through the topic modeling technique. Thereafter, hot and cold topics of the derived detailed Fintech technologies are identified to determine the trend of Fintech technologies. In addition, the trends of technology development in the USA, South Korea, and China, which are major market countries for major Fintech industrial technologies, are analyzed. Finally, through the analyses of networks between detailed Fintech technologies, linkages between the technologies are examined. The trends of Fintech industrial technologies identified in the present study are expected to be effectively utilized for the establishment of policies in the area of the Fintech industry and Fintech related enterprises' establishment of technology strategies.

Electronic-Composit Consumer Sentiment Index(CCSI) development by Social Bigdata Analysis (소셜빅데이터를 이용한 온라인 소비자감성지수(e-CCSI) 개발)

  • Kim, Yoosin;Hong, Sung-Gwan;Kang, Hee-Joo;Jeong, Seung-Ryul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.121-131
    • /
    • 2017
  • With emergence of Internet, social media, and mobile service, the consumers have actively presented their opinions and sentiment, and then it is spreading out real time as well. The user-generated text data on the Internet and social media is not only the communication text among the users but also the valuable resource to be analyzed for knowing the users' intent and sentiment. In special, economic participants have strongly asked that the social big data and its' analytics supports to recognize and forecast the economic trend in future. In this regard, the governments and the businesses are trying to apply the social big data into making the social and economic solutions. Therefore, this study aims to reveal the capability of social big data analysis for the economic use. The research proposed a social big data analysis model and an online consumer sentiment index. To test the model and index, the researchers developed an economic survey ontology, defined a sentiment dictionary for sentiment analysis, conducted classification and sentiment analysis, and calculated the online consumer sentiment index. In addition, the online consumer sentiment index was compared and validated with the composite consumer survey index of the Bank of Korea.

Predicting the success of CDM Registration for Hydropower Projects using Logistic Regression and CART (로그 회귀분석 및 CART를 활용한 수력사업의 CDM 승인여부 예측 모델에 관한 연구)

  • Park, Jong-Ho;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.65-76
    • /
    • 2015
  • The Clean Development Mechanism (CDM) is the multi-lateral 'cap and trade' system endorsed by the Kyoto Protocol. CDM allows developed (Annex I) countries to buy CER credits from New and Renewable (NE) projects of non-Annex countries, to meet their carbon reduction requirements. This in effect subsidizes and promotes NE projects in developing countries, ultimately reducing global greenhouse gases (GHG). To be registered as a CDM project, the project must prove 'additionality,' which depends on numerous factors including the adopted technology, baseline methodology, emission reductions, and the project's internal rate of return. This makes it difficult to determine ex ante a project's acceptance as a CDM approved project, and entails sunk costs and even project cancellation to its project stakeholders. Focusing on hydro power projects and employing UNFCCC public data, this research developed a prediction model using logistic regression and CART to determine the likelihood of approval as a CDM project. The AUC for the logistic regression and CART model was 0.7674 and 0.7231 respectively, which proves the model's prediction accuracy. More importantly, results indicate that the emission reduction amount, MW per hour, investment/Emission as crucial variables, whereas the baseline methodology and technology types were insignificant. This demonstrates that at least for hydro power projects, the specific technology is not as important as the amount of emission reductions and relatively small scale projects and investment to carbon reduction ratios.