Big data is an emerging issue as large data which was impossible to be processed in the past is possible to be handled with the development of information and communication technology. Manufacturing is the most promising field that big data is applied such that there are abundant data available. It is important to improve an efficiency of manufacturing process for quality control and production efficiency because the processes from production design, sales, productions and so on are mixed intricately. This study proposes big data cloud service for manufacturing analysis using a big data technology and a process mining technique. It is expected for manufacturing corporations to improve a manufacturing process and reduced the cost by applying the proposed service. The service provides various analyses including manufacturing analysis and manufacturing duration analysis. Big data cloud service has been implemented and it has been validated by conducting a case study.
최근 기업의 각 업무가 정보화 되면서 부문별, 업무별 정보시스템의 데이터 간에 심각한 중복성과 불일치성의 문제가 대두되면서 데이터 품질관리에 관심이 집중되고 있다. 본 연구는 실제로 데이터 표준 관리와 데이터 요구사항 관리를 통매 데이터 품질 관리 프로세스를 개선한 사례를 제시함으로써 데이터 품질 향상을 위해 노력하는 타 기업들에게 도움을 주고자 하였다. 또한, 개선된 데이터 품질 관리 프로세스에 대한 다차원적인 평가로서 데이터 품질, 생산성, 고객만족도, 조직 및 문화의 측면에서 정성 적이고 정량적인 지표를 통한 개선효과를 살펴보고 평가함으로써 제안된 프로세스에 의해 품질수준이 향상되었음을 검증하였고 평가 분석을 통한 시사점을 도출하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.59-62
/
2014
다양한 센서를 내장한 스마트기기가 보급되면서 개인의 활동부터 환경 상태까지 광범위한 미시 데이터의 수집이 가능해졌고, 또한 데이터 저장매체의 가격과 통신비용이 급격히 하락하고 있으며, 컴퓨터의 연산능력과 데이터 분석 방법론도 눈부시게 성장하는 중이다. 이러한 데이터 처리 기술의 발전과 함께 빅데이터에 대한 사회적 인식의 제고가 맞물리며 빅데이터 시장이 빠르게 성숙하고 있다. 이에 따라 국내 외 대다수의 기업들이 빅데이터 기술을 도입 검토 중에 있으며, 특히 글로벌 콘텐츠(방송, 음악, 도서 등) 기업들의 맞춤형 추천 서비스 성공 사례들로 인해 빅데이터 기술이 콘텐츠 산업 업계의 차세대 먹거리로 주목을 받고 있다. 이에 본 논문은 국내 케이블 방송 사업자들이 빅데이터 기술을 접목한 차별화된 서비스 제공을 통해 고객에게 새롭고 차별화된 가치를 제공할 수 있는 서비스 방안에 대해서 연구하였다.
Fine dust has recently become one of the greatest concerns of Korean people and has been a target of considerable efforts by governments and local governments. In the academic world, many researches have been carried out in relation to fine dust, but the research on the economic field has been relatively few. So we wanted to know how fine dust affects the economy. Big data of PM10 concentration for fine dust and fine dust theme stock price were collected for five years from 2013 to 2017. Regression analysis was performed using the linear regression model, the generalized least squares method. As a result, the change in the fine dust concentration was found to have a effect on the related theme stocks' price. When the fine dust concentration increased compared to the previous day, the fine dust theme stocks' price also showed a tendency to increase. Also, according to the analysis of stock price change from 2013 to 2017 based on fine dust theme stocks, companies with large regression coefficients were changed every year. Among them, the regression coefficients of Monalisa were repeatedly high in 2014, 2015, 2017, Samil Pharmaceutical in 2015, 2016 and 2017, and Welcron in 2016 and 2017, and the companies were judged to be sensitive to the concentration of fine dust. The companies that responded the most in the past 5 years were Wokong, Welcron, Dongsung Pharmaceutical, Samil Pharmaceutical, and Monalisa. If PM2.5 measurement data are accumulated enough, it would be meaningful to compare and analyze PM2.5 concentration with independent variables. In this study, only the fine dust concentration is used as an independent variable. However, it is expected that a more clear and well-explained result can be found by adding appropriate additional variables to increase the explanatory power.
In recent years, the rapid diffusion of smart devices and growth of internet usage and social media has led to a constant production of huge amount of valuable data set that includes personal information, buying patterns, location information and other things. IT and Production Infrastructure has also started to produce its own data with the vitalization of M2M (Machine-to-Machine) and IoT (Internet of Things). This analysis study researches the applicable effects of Structured and Unstructured Big Data in various business circumstances, and purposes to find out the value creation method for a corporation through the Structured and Unstructured Big Data case studies. The result demonstrates that corporations looking for the optimized big data utilization plan could maximize their creative values by utilizing Unstructured and Structured Big Data generated interior and exterior of corporations.
Proceedings of the Korea Database Society Conference
/
2001.06a
/
pp.1-9
/
2001
o CRM은 모든 e-business 전략의 초석임 o 고객 중심이 되도록 모든 업무 프로세스를 정리함 o 기업 내/외부의 모든 업무 프로세스를 통합함 o 공급망 및 기업 내부와의 통합이 필수적임 o CRM 실현 기술 및 패키지 관점의 프로젝트가 아니라, 명확한 기업의 목표 및 고객 특성 분석에서 출발해야 함. (중략)
Proceedings of the Korean Information Science Society Conference
/
2005.07a
/
pp.271-273
/
2005
많은 글로벌 기업들이 비용절감 및 효율성 증대를 위하여 RFID 시스템을 도입하거나 도입을 적극 검토 중에 있다. RFID 시스템으로부터 획득된 수많은 정보들이 기업의 업무효율을 증대시킬 수 있도록 하기 위해서는 상위 응용 서비스에서 RFID 데이터를 효율적으로 사용할 수 있도록 리더와 응용 서비스 간의 중계 역할을 할 수 있는 RFID 미들웨어의 역할이 매우 중요하다. 이러한 요구사항에 맞춰 최근 EPCglobal에서는 RFID 미들웨어인 ALE(Application Level Event)를 제시하고 있다. ALE는 RFID 리더에 의해 읽혀진 EPC 이벤트 데이터를 실시간으로 수집하여 원본 데이터의 오류를 보정한 후에 사용자와 응용 서비스의 요구에 따라 특정 이벤트 데이터를 필터링하여 보고하는 역할을 한다. 본 논문에서는 ALE의 실시간 EPC 이벤트 데이터 처리를 위한 EMS(Event Management System) 컴포넌트를 제시하며 EMS에 대한 요구사항을 분석하고 설계하였다. EMS 컴포넌트는 RFID 리더를 통해서 끊임없이 들어오는 스트링 형태의 EPC 이벤트 데이터를 블록킹 없이 수집하는 역할을 한다. 또한, RFID 리더에서 수집한 데이터의 보정 및 필요 데이터 추출을 위한 다양한 필터링 기능을 제공함으로써 수집된 데이터의 정확성을 높이며 신속한 데이터 제공을 가능하게 한다.
With the advent of the 4-th industrial revolution, manufacturing companies have increasing interests in the realization of smart manufacturing by utilizing their accumulated facilities data. However, most previous research dealt with the structured data such as sensor signals, and only a little focused on the unstructured data such as text, which actually comprises a large portion of the accumulated data. Therefore, we propose an association rule mining based facility error pattern extraction framework, where text data written by operators are analyzed. Specifically, phrases were extracted and utilized as a unit for text data analysis since a word, which normally used as a unit for text data analysis, is unable to deliver the technical meanings of facility errors. Performances of the proposed framework were evaluated by addressing a real-world case, and it is expected that the productivity of manufacturing companies will be enhanced by adopting the proposed framework.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.556-559
/
2013
The purpose of the current research is to develop a strategy to activate the domestic Cloud Date Center (CDC), which allows various cloud services as a fundamental infrastructure in the rising cloud market. Specifically, the paper is proceeded based on three steps; (1) in the first step, the authors analyzes the overall CDC market including leading domestic as well as international CDC companies (e.g., EMC, HP, IBM, Samsung SDS, LG CNS, SK C&C) focusing on revenue, firm size, employee numbers, total energy consumption, market share, and so on. (2) In the next step, the study derives strengths and weaknesses based on the results of the first step. These strengths and weaknesses help us to deduct the factors which should be reinforced or complimented for the domestic CDC's competitive advantage in the global CDC market. Finally, considering these strengths and weaknesses in the second step, the authors suggest a strategy to activate the domestic CDC. Thus, this research will focus on the development of the strategic direction for the domestic CDC, which includes a checklist of strengths and weaknesses by analyzing the overall CDC market situation.
본고에서는 교육 분야에서 다양한 데이터를 수집 및 분석하여 개인화된 학습 서비스를 제공하려는 학습 분석(Learning Analytics) 서비스의 개념과 앞으로 기대되는 유즈케이스를 소개한다. 국제적으로 주목 받고 있는 학습 분석 기술은 현재 개념화 수준에 머물러 있지만, 글로벌 기업들이 주축이 된 민간단체에서는 데이터 수집체계와 같은 구체적인 구현 방법에 대한 논의도 추진되고 있어서 관련 현황에 대한 진단도 해본다. 특히 국제 표준화 기구와 단체를 통해 추진되고 있는 내용을 중심으로 소개한다. 다양한 데이터 응용 기술을 융합해서 기대할 수 있는 학습 분석 서비스 모형을 제시하면서 관련 정책과 제품개발에 기여할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.