• Title/Summary/Keyword: 기어설계

Search Result 345, Processing Time 0.027 seconds

A Study on the Automated Design System for Gear (기어설계 자동화 시스템에 관한 연구)

  • Jo, Hae-Yong;Nam, Gi-Jeong;O, Byeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1506-1511
    • /
    • 2002
  • A computer aided expert system fur spur, helical, bevel and worm gears was newly developed by using AutoiCAD system and its AutoLISP computer language in the present study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, nm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course.

Preliminary Mechanism Design of Multi-Stage Gear Drives using a Fuzzy Expert System (퍼지 전문가 시스템을 이용한 다단 기어장치 메커니즘의 초기 설계)

  • 정태형;이호영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.759-762
    • /
    • 2002
  • A preliminary design process in the multi-stage gear drives design is important part. a preliminary design support system which run efficiently the design is developed with fuzzy expert system. the system automatically generate the mechanism of multi-stats gear drives and select a candidate mechanism by the general expert rule and sorting using fuzzy expert system. the preliminary mechanism design of multi-stage gear drives have a short execution time, add accuracy in a preliminary design considering volume, cost, power and efficiency in preliminary, a design efficiency is increased and a preliminary design have a elasticity using a weight on variable's sorting mechanism.

  • PDF

A Study on Optimum Design of 2MW Wind Turbine Gearbox Using a Integrated Design Software (통합설계프로그램을 이용한 2MW 풍력발전시스템용 기어박스의 최적설계에 관한 연구)

  • Choi, Young-Hyuk;Park, Koo-Ha;Jo, Joon-Haeng;Lee, In-Woo;Oh, Sei-Woong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.249-252
    • /
    • 2006
  • Wind turbine gearbox is a complex mechanical system that includes gear trains, shafts, bearings, and gearbox housings. All these component are interacting with each other therefore changing certain design parameter will affect other components. RomaxDesigner enables a reduction in development period by simulating the full gearbox system. The gear pairs, bearings and shafts are represented as analysis objects and the complex components are modelled by means of reduced stiffness matrices. The software allows durability analysis and advanced contact analysis including the effects of system misalignments in gear and bearing. In this paper the 2MW wind turbine gearbox was model led and a study on optimum design was conducted

  • PDF

Design, manufacture and analysis of gear train with composition of optimum gear ratio (최적 기어비 구현을 통한 치차열의 설계, 제작 및 분석)

  • 정상목;윤재윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.132-138
    • /
    • 1999
  • This paper addresses an analytical approach to the mechanical error analysis of gear train and tolerance design and manufacture of gear train in restricted space considering motor driving torque, driving system inertia, motor acceleration, motor rotor inertia and friction torque. The gear train is designed to have optimum gear ratio in restricted space and each gear is manufactured to have the lowest weight and each gear tooth is heat-treated to have robustness. Based on the small difference between the mechanical error analysis and measurement, gear train design with optimum gear ratio and restricted space and robustness is proposed

  • PDF

A study on the design of cycloidal pitch reducer for the 2MW-class wind turbine (2MW급 풍력발전기 사이클로이드 피치감속기 설계에 대한 연구)

  • Min, Young-Sil;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.895-902
    • /
    • 2015
  • In this paper, finite element analysis of a cycloidal pitch reducer for a 2 MW-class wind turbine is reviewed. The system is composed of one cycloid set, one spur gear set, an input shaft, an output shaft, and a housing. The system was also evaluated for stability by analyzing spur gear strength according to ISO 6336. An analysis of the natural vibration characteristics of the 2 MW-class wind turbine cycloid pitch reducer was performed with attention to critical speed with input mass unbalance, output mass unbalance, spur gear transmission error, cycloid gear transmission error, and excitation frequency.

A Study on the Helical Gear Forming by Cold Extrusion (냉간 압출에 의한 헬리컬 기어의 제조에 관한 연구)

  • 최재찬;조해용;권혁홍;한진철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-138
    • /
    • 1991
  • A gear forming method by cold extrusion and an analytical method with its numerical solution program based on the upper bound method were developed. In the analysis the involute curve was as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical(spur) gear were successfully calculated. These numerical solutions are in good agreement with experimental data. In the experiment, 4-6 class helical gear of KS standard for automobile transmission was successfully manufactured.

Torque Ripple Improving and Analysis of Coil-winding Rotor of Magnetic Gear (권선계자형 자기 기어의 고 토크 리플 회전자에 대한 분석 및 개선)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.259-266
    • /
    • 2020
  • Magnetic gears have the same characteristics as mechanical gears, and each rotor does not come in contact, which is advantageous over mechanical gears in friction noise, heat generation, and maintenance. In addition, when the rotor using the coil-winding is applied, it is possible to control the output of the gear as well as to cut off its own drive in the emergency situation and to change its gear ratio. So the application of the magnetic gear is infinite. However, when the coil-winding rotor is used, cogging torque due to the attraction force between the permanent magnet and the iron core appears, which leads to an increase in the torque ripple component causing the rotor vibration. Therefore, in this paper, various shapes of the coil-winding rotor are analyzed to reduce the torque ripple of the rotor, and the optimum shape for reducing the torque ripple of the magnetic gear is presented.

Improved Torque Ripple Through Pole Piece Deformation of Gear Ratio Transformed Magnetic Gear (폴피스 변형을 통한 기어비 변환형 마그네틱 기어의 토크 리플 개선)

  • Beom-Seok Byeon;Eui-Jong Park;Yong-Jae Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • This paper introduces a study on an electromagnet magnetic gear designed for gear ratio conversion. In comparison to magnetic gears using permanent magnets, this electromagnet magnetic gear exhibits lower torque density, highlighting the need for torque density improvement. To address this, the research focuses on enhancing torque density by examining the consistent orientation of each rotor's magnetization during gear ratio conversion and attaching permanent magnets accordingly. However, an issue arises due to the uneven magnetic flux density caused by the non-uniform attachment of permanent magnets, leading to an increase in torque ripple. Therefore, building upon previous studies aimed at reducing torque ripple in electromagnet magnetic gears, this research explores the optimal methods, such as pole piece bridges and fillet configurations, to mitigate torque ripple even during gear ratio conversion.

Optimization Analysis of Driving Gear of Large Capacity Non-contact Mixer for MLCC Electronic Materials (MLCC 전자재료용 대용량 비접촉식 교반기 구동기어의 형상최적화 구조해석)

  • Choi, Byungju;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • MLCC is key parts of many electronic products and mixer is used to make MLCC. Currently, non-contact mixer is increasingly used due to its many merits. In case of large capacity non-contact mixer, function of driving gear is important. In this study, therefore, in order to reduce manufacturing cost through optimal design of driving gear of large capacity non-contact mixer, study on shape optimization of driving gear without excessive design modification was performed. As the results, because safety factors of modification model were decreased about 3.0 ~ 3.5 times compared with those of model with robust design, the possibility for saving manufacturing cost was confirmed.

Optimal Design of a Gear Pump for Yarning (방사용 기어펌프 최적설계)

  • Cheon, Gill-Jeong;Youn, In-Seong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.457-463
    • /
    • 2001
  • Optimal design program for an external gear pump for yarning has been developed. Optimization is accomplished using ADS program. Pump design parameters can be determined automatically for maximum gear efficiency with constraints considering shaft, bearing, gear and pump. Comparing the design parameters obtained by the program with those of the sample, it was verified that the program could be used as a design tool if it is modified a little.

  • PDF