가상 공간의 익명성으로 인하여 개인들은 물리적 세계와 다른 자기를 가상 세계에서 창조한다. 본 연구의 목적은 물리적 세계의 자기와 가상 세계의 자기 사이에 존재하는 차이가 개인의 온라인 커뮤니티 활동에 어떠한 영향을 미치는지 고찰하는 것이다. 먼저, 자기차이이론(Self discrepancy theory)을 기반으로 자기차이에 대한 개념적 정의를 도출하고 자기차이를 가상 세계 내에 존재하는 자기차이(Self-discrepancy in virtual world)와 물리적 세계와 가상 세계 사이에서 존재하는 자기차이(Cross-world self-discrepancy)로 세분화 하였다. 또한 각각의 자기차이를 요인 분석을 통하여 개인적 자기차이(Personal self-discrepancy)와 사회적 자기차이(Social self-discrepancy)로 구분하였다. 도출된 서로 다른 유형의 자기차이가 개인의 커뮤니티 지속사용 및 지식 기여 사이에 어떠한 영향을 미치는지 이론적 모형을 개발하고, 수집된 300개의 설문자료를 바탕으로 이를 검증하였다. 분석 결과, 가상 세계 내에서 존재하는 자기차이는 지각된 자기표현 유용성에 부의 영향을 미치는 반면, 가상 세계와 물리적 세계 사이에 존재하는 자기차이는 자기표현 유용성에 정의 영향을 미치는 것으로 나타났다. 또한 지각된 자기표현 유용성과 사용 용이성은 커뮤니티 지속 사용과 지식기여에 모두 정의 영향을 미치는 것으로 나타났다. 본 연구는 전통적인 자가차이 이론에서 논의되어온 자기에 대한 개념을 가상세계의 자기로 확장하였으며, 서로 다른 유형의 자기차이가 개인의 행위에 미치는 영향을 온라인 커뮤니티 정황에 적용함으로써 자기 개념에 대한 이론적 발전에 기여하였다.
2016년 "주택법 일부개정 법률안"과 "2018년 주거 종합수정계획" 이후 공동주택의 선분양 제도와 후분양 제도의 관심이 대두되고 있다. 본 연구에서는 공동주택의 선분양제도와 후분양제도의 장·단점을 비교하고, 후분양제도의 제도정책 기반을 수립하기 위해서 공공측면에서 공동주택의 입주자를 대상으로 설문 조사기법을 사용하고, 시간과 비용의 문제를 시계열 분석방법으로 분담금 납입 적정 시기를 제안하고자 한다. 이에 따라 기존이론과 문헌고찰을 통해서 공공기관과 민간기관의 후분양제도를 정리하고, 설문조사를 통해서 분양금 확보경로, 모델하우스의 제품정보, 후분양제도의 효과에 대한 인식도를 조사하였다. 후분양 기금지원 및 납부방식을 사용자 입장에서 기금융자 상한선을 높일 필요가 있고, 지역별 분양시장의 경제력을 고려한 운영이 필요하다. 60% 후분양과 80% 후분양 모두 1,000만원까지 수용가격대가 형성되어있고, 총 이율 환산 시 5.0%, 연리로는 60% 후분양 시 약 2.8%, 80% 후분양에서 약 2.1% 수준이므로 현행 3.1% 보다 낮은 이율이 필요하다. 연구는 공공기관 후분양아파트 입주자 표본 총 5,213가구를 대상으로 하는 인식조사로서 시장수급과 시장가격의 영향 등에 대한 시계열을 사용하여 실제 값을 분석한 자료이므로 민간공동주택 입주 예정자에 적용하는데 한계가 있다. 또한 최초입주자의 응답을 위해 최근 5년 내 입주한 5개 단지를 대상으로 설문조사를 실시하였다. 향후 조사 표본을 확대한다면 민간시장 가격에 일반화가 가능할 것이다.
국내 모바일 커머스 시장은 현재 소셜커머스가 이용자 수 측면에서 오픈마켓을 압도하고 있는 상황이다. 산업계에서는 모바일 시장에서 소셜커머스의 성장에 대해 빠른 모바일 시장진입, 큐레이션 모델 등을 주요 성공요인으로 제시하고 있지만, 이에 대한 학계의 실증적인 연구 및 분석은 아직 미미한 상황이다. 본 연구에서는 사용자 리뷰를 바탕으로 모바일 소셜커머스와 오픈마켓의 사용자 이용경험을 비교 분석하는 탐험적인 연구를 수행하였다. 먼저 본 연구는 구글 플레이에 등록된 국내 소셜커머스 주요 3개 업체와 오픈마켓 주요 3개 업체의 모바일 앱 리뷰를 수집하였다. 본 연구는 LDA 토픽모델링을 통해 1만여건에 달하는 모바일 소셜커머스와 오픈마켓 사용자 리뷰를 지각된 유용성과 지각된 편리성 토픽으로 분류한 뒤 감정분석과 동시출현단어분석을 수행하였다. 이를 통해 본 연구는 국내 모바일 커머스 상에서 오픈마켓 이용자들에 비해 소셜커머스 이용자들이 서비스와 이용편리성 측면에서 더 긍정적인 경험을 하고 있음을 증명하였다. 소셜커머스는 '배송', '쿠폰', '할인'을 중심으로 서비스 측면에서 이용자들에게 긍정적인 이용경험을 이끌어내고 있는 반면, 오픈마켓의 경우 '로그인 안됨', '상세보기 불편', '멈춤'과 같은 기술적 문제 및 불편으로 인한 이용자 불만이 높았다. 이와 같이 본 연구는 사용자 리뷰를 통해 서비스 이용경험을 효과적으로 비교 분석할 수 있는 탐험적인 실증연구법을 제시하였다. 구체적으로 본 연구는 LDA 토픽모델링과 기술수용모형을 통해 사용자 리뷰를 서비스와 기술 토픽으로 분류하여 효과적으로 분석할 수 있는 새로운 방법을 제시하였다는 점에서 의의가 있다. 또한 본 연구의 결과는 향후 소셜커머스와 오픈마켓의 경쟁 및 벤치마킹 전략에 중요하게 활용될 수 있을 것으로 기대된다.
최근 병원 및 은행 등의 대규모 데이터베이스에 접근하는 사용자의 요구 사항이 다양해짐에 따라 데이터베이스 보안에 대한 중요성도 커졌다. 기존의 접근 제어 정책을 이용한 데이터베이스 보안 모델들이 존재하지만 이들은 복잡하고, 다양한 유형의 접근제어를 원하는 사용자의 보안 요구를 충족시키지 못한다. 본 논문에서는 데이터베이스를 접근하는 각 사용자별로 다양한 크기의 데이터 그룹에 대한 접근 제어론 제공하며, 임의의 정보에 대한 사용자의 접근 권한의 변화를 유연하게 수용하는 데이터베이스 보안 시스템을 제안하였다. 이를 위해 다양한 크기의 데이터 그룹을 테이블, 속성, 레코드 키에 의해 정의하였고, 사용자의 접근 권한은 보안 등급, 역할과 보안 정책들에 의해 정의하였다. 제안하는 시스템은 두 단계로 수행된다. 제 1단계는 수정된 강제적 접근 제어(Mandatory Access Control: MAC)정책과 역할 기반 접근 제어(Role-Based Access Control: RBAC)정책에 의해 수행된다. 이 단계에서는 사용자 및 데이터의 보안 등급과 역할에 의해 접근이 제어되며, 모든 형태의 접근 모드에 대한 제어가 이루어진다. 제 2단계에서는 수정된 임의적 접근 제어(Discretionary Access Control: RBAC)정책에 의해 수행되며, 1단계 수행결과가 다양한 크기의 데이터 항목에 대한 read 모드 접근제어 정책에 따라 필터링되어 사용자에게 제공한다. 이를 위해 사용자 그룹은 보안 등급에 의한 그룹, 역할에 의한 그룹, 사용자 부분집합으로 이루어진 특정 사용자 그룹으로 정의하였고 Block(s, d, r) 정책을 정의하여 특정 사용자 5가 특정 데이터 그룹 d에 'read' 모드, r로 접근할 수 없도록 하였다. 제안한 시스템은 사용자별 데이터에 대한 접근 제어가 복잡하게 요구되는 특정 유전체 연구 센터의 정보에 대한 보안 관리를 위해 사용하였다.안성, 동진벼는 안성, 서산 및 화순, 삼강벼는 안성, 서산, 화순 및 계화도 그리고 용문벼는 안성과 충주였다. 유지보수성을 증대할 수 있는 잇점을 가진다.역되어 MC-3에서 수행된다.위해 가상현실 기술을 이용한 컴퓨터 지원 교육훈력 시스템(CATS ; Computer Assister Training System)을 개발 중이며 일부 개발부분을 소개하였다.하며, 제 2선적제도의 발달과 해운경영의 국제성에 맞추어 근해해역에서 활동하는 우리나라의 선박에대해서 부분적으로 선박의 국적을 점차 개방시켜 나가는 정책을 검토해야 할 단계라는 것이다. 이러한 점에 있어서 지난 30여년간 외항해운부문에 중점을 두어온 우리나라의 해운정책은 이제 근해해운정책의 개발에도 관심을 기울여야 하는 전환점에 있다고 할 수있다.의 목적과 지식)보다 미학적 경험에 주는 영향이 큰 것으로 나타났으며, 모든 사람들에게 비슷한 미학적 경험을 발생시키는 것 이 밝혀졌다. 다시 말하면 모든 사람들은 그들의 문화적인 국적과 사회적 인 직업의 차이, 목적의 차이, 또한 환경의 의미의 차이에 상관없이 아름다 운 경관(High-beauty landscape)을 주거지나 나들이 장소로서 선호했으며, 아름답다고 평가했다. 반면에, 사람들이 갖고 있는 문화의 차이, 직업의 차 이, 목적의 차이, 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인할수 있지만 엄밀히 생각하여 보면 이러한 예의 경우도 최락의 총체적인 외형은 마찬가지로 $\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에도 $\ulcorner$순응$\lrcorner$과 $\ulcorner$표현$\lrcorner$의 성격과
데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.