• Title/Summary/Keyword: 기선장에 따른 오차

Search Result 6, Processing Time 0.027 seconds

Multiple Reference Network Data Processing Algorithms for High Precision of Long-Baseline Kinematic Positioning by GPS/INS Integration (GPS/INS 통합에 의한 고정밀 장기선 동적 측위를 위한 다중 기준국 네트워크 데이터 처리 알고리즘)

  • Lee, Hung-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.135-143
    • /
    • 2009
  • Integrating the Global Positioning System (GPS) and Inertial Navigation System (INS) sensor technologies using the precise GPS Carrier phase measurements is a methodology that has been widely applied in those application fields requiring accurate and reliable positioning and attitude determination; ranging from 'kinematic geodesy', to mobile mapping and imaging, to precise navigation. However, such integrated system may not fulfil the demanding performance requirements when the baseline length between reference and mobil user GPS receiver is grater than a few tens of kilometers. This is because their positioning/attitude determination is still very dependent on the errors of the GPS observations, so-called "baseline dependent errors". This limitation can be remedied by the integration of GPS and INS sensors, using multiple reference stations. Hence, in order to derive the GPS distance dependent errors, this research proposes measurement processing algorithms for multiple reference stations, such as a reference station ambiguity resolution procedure using linear combination techniques, a error estimation based on Kalman filter and a error interpolation. In addition, all the algorithms are evaluated by processing real observations and results are summarized in this paper.

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF

Accuracy Analysis of Single Frequency Receiver for Baseline Range (기선장에 대한 일주파 수신기의 정확도 분석)

  • 박운용;신상철;안상준;홍정수
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.103-107
    • /
    • 2003
  • 현재 관측점간의 3차원 상대위치를 구하고 기준점의 측지학적 좌표ㆍ표고를 결정하는 작업을 수행하는 GPS(Global Positioning System) 측량은 신호가 전파인 관계로 대기권의 전파지연 오차를 포함하게 되며, 전리층 지연은 주파수에 반비례하는 특성이 있으므로 지역의 대소에 구분 없이 이주파수 수신기(dual-frequency GPS receiver)를 사용하여 정확하게 지연시간을 측정하고 그로 인한 측위정밀도의 정확성을 확보하고 있다. 본 연구는 비교적 낮은 가격인 일주파 수신기를 사용하여 기선거리별로 삼각점을 선점한 후 동일 시간에 관측을 실시하고 취득한 데이터 값을 추출한 후 기선거리에 따른 허용오차를 분석하고, 그 활용성 및 경제성과 일주파 수신기의 기선에 대한 사용 가능성을 분석하였다. 그 결과, 100km이내의 지역에서는 일주파 수신기 만으로도 충분히 만족스러운 결과를 얻을 수 있었다.

  • PDF

Calculation of Zero Error and Scale Error of EDM by Precise Baseline Measurement (정밀 기선장 관측에 의한 EDM 장비의 영점오차와 축척오차의 결정)

  • 조재명;윤홍식;이원춘
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.137-143
    • /
    • 2004
  • The electronic distance measurement(EDM) instrument, introduced first in the 1950s since those early days has, undergone continual refinement. Rapid advances established in related technologies have made it lighter, smaller and more precise equipment. Understanding for the principle, the standardized observation technique and the precision of EDM instrument is mostly important to improve the quality and the reliability of by-product in the field of engineering and industrial surveying. Periodical and accurate calibration is necessary to maintenance the precision of EDM instrument. This paper describes the calculated example of zero error and scale error as a correction of EDM by applying the least square method to baseline observations in test area. Also here we deal with the testing criteria for precision instrument testing according to different types of EDM instruments.

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

Analysis of Annual Variability of Landfast Sea Ice near Jangbogo Antarctic Station Using InSAR Coherence Images (InSAR 긴밀도 영상을 이용한 남극 장보고기지 인근 정착해빙의 연간 변화 분석)

  • Han, Hyangsun;Kim, Yeonchun;Jin, Hyorim;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.501-512
    • /
    • 2015
  • Landfast sea ice (LFI) in Terra Nova Bay, East Antarctica where the Jangbogo Antarctic Research Station is located, has significant influences on marine ecosystem and the sailing of an icebreaker. Therefore, it is essential to analyze the spatio-temporal variation of the LFI in Terra Nova Bay. In this study, we chose interferometric pairs with the temporal baseline from 1 to 9 days out of a total of 62 COSMO-SkyMed synthetic aperture radar (SAR) images over Terra Nova Bay obtained from December 2010 to January 2012, and then constructed the coherence image of each pair. The LFI showed coherence values higher than 0.3 even in the interferometric SAR (InSAR) pairs of up to 9-days of temporal baseline. This was because the LFI was fixed at coastline and thus showed low temporal phase decorrelation. Based on the characteristics of the coherence on LFI, We defined the areas of LFI that show spatially homogeneous coherence values higher than 0.5. Pack ice (PI) and open water showed low coherence values due to large temporal phase decorreation caused by current and wind. Distinguishing PI from open water in the coherence images was difficult due to their similarly low coherence values. PI was identified in SAR amplitude images by investigating cracks on the ice. The extents of the LFI and PI were estimated from the coherence and SAR amplitude images and their temporal variations were analyzed. The extent of the LFI increased from March to July (maximum extent of $170.7km^2$) and decreased from October. The extent of the PI increased from February to May and decreased from May to July when the LFI increases dramatically. The extent of the LFI and air temperature showed an inverse correlation with a time lag of about 2 months, i.e., the extent of the LFI decreases after 2 months of the increase in the air temperature. Meanwhile the correlation between wind speed and the extent of the LFI was very low. This represents that the extent of LFI in Terra Nova Bay are influenced more by the air temperature than wind speed.