• Title/Summary/Keyword: 기생패치

Search Result 67, Processing Time 0.032 seconds

Wideband Stacked Microstrip Antenna with Rectangular and Triangular Parasitic Patches for 860MHz Band (직사각형 및 삼각형 기생패치를 이용한 860MHz 대역 광대역 적층 마이크로스트립 안테나)

  • Ko, Jin-Hyun;Kim, Gun-Kyun;Rhee, Seung-Yeop;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.874-879
    • /
    • 2016
  • A wideband stacked patch antenna with parasitic elements, rectangular and triangle shaped patches, is proposed. Two different shaped parasitic elements are placed in the above of main rectangular microstrip patch antenna in order to achieve wide bandwidth for 860 MHz band. Coupling between the main patch and parasitic patches is realized by thick air gap. The gap and locations of parasitic patches are found to be the main factor of the wideband impedance matching. The proposed antenna is designed and fabricated on a ground plane with small size of $119mm{\times}109mm$ for application of compact transceivers. The fabricated antenna on an FR4 substrate shows that the minimum measured return loss is below -11.68dB at 824 MHz and an impedance band of 818~919 MHz(11.7%) at 10dB return loss level. The measured radiation patterns are similar to those of a conventional patch antenna with maximum gain of 2.11 dBi at 824 MHz.

Design and Analysis of Gap Coupled Microstrip Patch Antenna using the FDTD method (유한차분 시간영역법을 이용한 갭 결합 마이크로 스트립 패치안테나의 설계 및 해석)

  • Shin, Ho-Sub
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.389-393
    • /
    • 2009
  • In this paper, the single patch microstrip antenna and gap coupled broadband microstrip patch antenna using FDTD(Finite Difference Time Domain method) are analyzed. Mur's 2nd absorbing boundary condition to minimize reflected wave is applied. Return loss, voltage standing wave ratio, and input impedance by the length and width of driving patch, the length and width of parasitic patch, and the distance between driving patch and parasitic patch have been analyzed. Design parameters and radiation patterns of broadband antenna have been also shown.

  • PDF

Design of a Compact Broadband Stacked Microstrip Patch Antenna (광대역 적층 마이크로스트립 패치 안테나의 소형화 설계)

  • Kim, GunKyun;Rhee, Seung-Yeop;Yeo, Junho;Lee, Jong-Ig;Kim, Ohn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.72-73
    • /
    • 2016
  • In this paper, we studied a method for miniaturizing a broadband stacked patch antenna structure which is widely used for bandwidth improvement. Main patch is a rectangular microstrip patch antenna fed by a 50-ohm microstrip line, and a parasitic patch is laid above the main patch. The size of the main patch is designed to be resonated near the center frequency of the desired frequency band. Then parasitic patch longer than main patch is placed above the main patch. The distance between two patches might be adjusted so as to achieve impedance matching using a shunt open stub. The shunt matching stub is inserted underneath the parasitic patch and so it does not require additional space, which enables the proposed antenna structure to be advantageous in miniaturizing antenna. The effects of the various parameters on the antenna performance are examined, and we introduced the design procedure for the proposed antenna to operate in the frequency range of 2.3-2.7 GHz.

  • PDF

Wideband Stacked Microstrip Antenna with Parasitic Patches for 800MHz Band (기생패치를 이용한 800MHz 대역 광대역 적층 마이크로스트립 안테나)

  • Kim, GunKyun;Lee, Jong-Ig;Ko, Jin-hyun;Rhee, Seung-Yeop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.83-84
    • /
    • 2016
  • A wideband stacked patch antenna with parasitic elements, rectangular and triangle shaped patches, is proposed. Two different shaped parasitic elements are placed in the above of main rectangular microstrip patch antenna in order to achieve wide bandwidth for 860 MHz band. Coupling between the main patch and parasitic patches is realized by thick air gap. The gap and locations of parasitic patches are found to be the main factor of the wideband impedance matching. The proposed antenna is designed on a ground plane with small size of $119mm{\times}109mm$ for application of compact transceivers. And the impedance bandwidth of the antenna should satisfied CDMA band to the 780MHz~890MHz.

  • PDF

Design of Miniaturized Broadband Parasitic Patch Antenna Using Reduced Size Main Patch with U-Shaped Parasitic Patches (폭이 좁아진 주 패치와 U자 형태의 기생 패치를 이용한 소형화된 광대역 기생 패치 안테나 설계)

  • Wi, Sang-Hyuk;Kim, Woo-Tae;Hong, Young-Pyo;Yuk, Jai-Rim;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.389-397
    • /
    • 2007
  • This paper proposes miniaturized broadband parasitic patch antenna. The proposed antenna consists of a probe fed reduced size main patch and U-shaped parasitic patches. The parasitic patches are incorporated to the radiating edges of the main patch to miniaturize the antenna size. The broadband impedance matching can be achieved by either E-plane or H-plane electromagnetic coupling between main patch and parasitic elements. The size of radiating elements is $18{\times}17.6\;mm^2$ and the overall dimension of designed antenna with substrate and ground plane is $25{\times}30{\times}4\;mm^3$. The fabricated antenna on a FR4 substrate shows two resonant frequencies(5.12 GHz and 6.08 GHz) with 27.3 %(1.5 GHz) fractional bandwidth at 5.5 GHz center frequency. The calculated and measured radiation patterns are almost similar to conventional patch antenna.

Small Mu-Zero Zeroth Order Resonance Antenna with Parasitic Patch (기생패치를 이용한 소형 뮤-제로 영차공진 안테나)

  • Um, Kwi Seob;Lee, Chang-Hyun;Lee, Jae-Gon;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.350-357
    • /
    • 2016
  • In this paper, a small mu-zero zeroth order resonance(ZOR) antenna based on meta structure is proposed using parasitic patch at 5.8 GHz. The mu-zero ZOR antenna is designed by utilizing the resonance of series inductance and capacitance of mu-negative transmission line and its size can be further reduced by a simple parasitic patch. The parasitic patch can increase series capacitance of mu-negative transmission line related to a resonant frequency. We have simulated and optimized dimension of the parasitic patch using Ansys commercial simulator(HFSS). As a result, the antenna has the following characteristics: kr of 0.59, efficiency of 92 %, and gain of 6.57 dBi. Also, its size is reduced by 24 % compared to a conventional mu-zero ZOR antenna. The measured results are in good agreement with the simulated results.

Broadband Improvement of The Rectangular Microstrip Patch Antennas (구형 마이크로스트립 패치 안테나 대역폭 개선)

  • 이현지;임영석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.875-879
    • /
    • 2001
  • 마이크로스트립 패치안테나의 대역을 증가시키는 방법이 꾸준히 연구되고 있다. 본 연구에서는 구형 패치 구조에 기생 소자를 더한 형태로 구형 패치 외부에 바(bar)와 밴드(band) 모양의 기생소자를 설치하여 프린징 효과를 최소화 하고자 하였으며, 이로 인한 안테나 효율의 향상과 대역폭을 증가를 시키고자 하였으며, 또한 기생소자의 폭과 방사안테나의 간격을 조절하여 대역폭과 임피던스정합 특성의 변화를 해석하였다. 이를 이용하여 LMDS통신 주파수 대역인 24.6GHz∼28.5GHz에서 공진 대역을 갖도록 설계하였다. 정재파비 2.0 이하를 기준으로 기존의 패치안테나의 중심주파수에 대한 대역 이용율이 수 %인데 반하여, 본 연구에서 제시한 밴드를 설치한 구조의 경우 12.92%로 증가함을 알 수 있고, 또한 본 연구에서 제시한 외부 밴드를 갖는 구조가 급전선로와 패치 안테나와의 정합특성이 월등함을 확인하였다.

  • PDF

Design of a Miniature Wideband H-shaped Microstrip Antenna for WLAN (WLAN용 소형 광대역 H-모양 마이크로스트립 안테나)

  • 이문수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.173-173
    • /
    • 2004
  • In this paper, a wideband two-layer H-shaped microstrip antenna for WLAN is designed. To increase the bandwidth of microstrip patch antenna a configuration of stacked type using parastic element is used. Furthermore, to reduce the size of microstrip patch antenna, two techniques are employed . the first one is H-shaped patch type and the second one is that the main radiator and parastic patch are shorted to the ground plane using ten shorting posts. The antenna bandwidth and radiation characteristics are calculated by ENSEMBLE ver. 5.0 simulation software, and compared with the experimental results. Experiment results show that the bandwidth of antenna in 740㎒ centered at 5.46㎓(13.5%), which is close agreement with the calculations, 770㎒(13%). Also, the antenna size can be reduced by 71.5% compared with the half wavelength rectangular microstrip antenna using the same substrate at the same frequency.

Microstrip Antenna of the patch width and ground plane width equal width (패치폭과 그라운드면이 같은 마이크로스트립 안테나)

  • 고영혁
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.530-533
    • /
    • 2003
  • 본 논문에서는 2GHz의 패치폭과 그라운드면의 폭이 같은 QMSA의 구조를 설계 및 제작하였고, QMSA의 구조를 변형하여 용량을 장하한 QMSA와 기생소자를 갖는 QMSA를 제안하였다. QMSA의 구조는 한 쪽 끝이 전기적으로 단락된 λ/4의 구조로 설계하였으며, 용량을 갖는 QMSA는 상측 평행 평판과 하측 평행 평판 사이의 용량을 구성시킴으로써 리턴로스와 공진주파수의 변화를 비교 평가하였다. 또한, 기생소자를 갖는 QMSA의 구조는 상측 평행 평판위에 기생소자를 가변함으로써 안테나를 소형화할 수 있었다. QMSA는 2GHz의 중심주파수를 갖고 2%의 대역폭을 갖으며, 용량의 변화와 기생소자의 길이에 따라 공진주파수의 변화를 보였다.

  • PDF

Design of Internal Integrated Microstrip Patch Antenna for PCS Handset (PCS 단말기용 내장형 마이크로스트립 패치 안테나 설계)

  • Cho Dong-Ki;Park Kyeng-Tea;Lee Ho-Sang;Lee Mun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.792-797
    • /
    • 2006
  • In this paper, an internal integrated microstrop patch for PCS handset is designed. To increase the bandwidth of microstrip patch antenna, a configuration of stacked type using parasitic element is used. Furthermore, to reduce the size of microstirip patch antenna, the main radiator in the substrate is shorted to the ground plane using five shorting-posts while three parasitic elements on the superstrate are also shorted to the ground plane using two shorting-posts respectively. The antenna bandwidth and radiation characteristics are calculated by HFSS 7.0 software, and compared with the experimental results. Experimental results show that the return loss is less than -10dB over the band of 1766MHz to 1900 MHz(134MHz) and the size of the fabricated microstrip patch antenna are $23\times20\times6.35mm$.