• Title/Summary/Keyword: 기상탑

Search Result 46, Processing Time 0.025 seconds

On the Annual Change of Surface Wind at Seocheon, Korea (서천지방의 지상풍 연변화에 관하여)

  • 문승의;김백조
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.375-382
    • /
    • 1998
  • The characteristics of the basic statistics and steadiness of wind and the monthly normality test of surface wind distribution are investigated by using the observed wind data compiled from 10m meteorological observation tower at Seocheon district, where is located In the western coastal region of Korea. during the period from Feb. 7, 1996 to Feb. 7 1997 The northerly is appeared to be even in August and Sepember due to the influences of loccal circulation such as land and sea breeze. The correlation coefacients between two wind components are seemed to be positive during the in the period of from June to September and negative from October to April, respectively The constancy of wand Is high In shifts to lower values Increasing sampling time. It is found from monthly normality test based on the skewness and the excess of kurtosis coefficients that the distribution of zonal wind component is normal In spring and meridional one Is normal in late summer and early autumn.

  • PDF

Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor (풍력터빈 후류 유동특성 측정 데이터를 이용한 Eddy Viscosity 및 Lange 후류모델의 예측 정확도 검증)

  • Jeon, Sang Hyeon;Go, Young Jun;Kim, Bum Suk;Huh, Jong Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

Evaluation of Predictability of Global/Regional Integrated Model System (GRIMs) for the Winter Precipitation Systems over Korea (한반도 겨울철 강수 유형에 따른 전지구 수치모델(GRIMs) 예측성능 검증)

  • Yeon, Sang-Hoon;Suh, Myoung-Suk;Lee, Juwon;Lee, Eun-Hee
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.353-365
    • /
    • 2022
  • This paper evaluates precipitation forecast skill of Global/Regional Integrated Model system (GRIMs) over South Korea in a boreal winter from December 2013 to February 2014. Three types of precipitation are classified based on development mechanism: 1) convection type (C type), 2) low pressure type (L type), and 3) orographic type (O type), in which their frequencies are 44.4%, 25.0%, and 30.6%, respectively. It appears that the model significantly overestimates precipitation occurrence (0.1 mm d-1) for all types of winter precipitation. Objective measured skill scores of GRIMs are comparably high for L type and O type. Except for precipitation occurrence, the model shows high predictability for L type precipitation with the most unbiased prediction. It is noted that Equitable Threat Score (ETS) is inappropriate for measuring rare events due to its high dependency on the sample size, as in the case of Critical Success Index as well. The Symmetric Extreme Dependency Score (SEDS) demonstrates less sensitivity on the number of samples. Thus, SEDS is used for the evaluation of prediction skill to supplement the limit of ETS. The evaluation via SEDS shows that the prediction skill score for L type is the highest in the range of 5.0, 10.0 mm d-1 and the score for O type is the highest in the range of 1.0, 20.0 mm d-1. C type has the lowest scores in overall range. The difference in precipitation forecast skill by precipitation type can be explained by the spatial distribution and intensity of precipitation in each representative case.

Optimized design and verification of Ship-type Floating Lidar Buoy system for Wind resource measurement in the Korean West Sea (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 최적화 설계 및 검증)

  • Yong-soo Gang;Jong-kyu Kim;Baek-beom Lee;Su-in Yang;Jong-wook Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.161-164
    • /
    • 2022
  • 부유식 라이다는 해상풍력단지 조성시 필수적으로 수행하고 있는 풍황관측 업무에 새로운 패러다임을 제공하고 있는 시스템으로, 전통적으로 풍황관측을 수행하고 있던 해상기상관측탑을 대체하여 사업 초기의 대규모 공사를 획기적으로 축소하여 시간과 비용을 절약하고, 환경적 영향을 최소화 하며, 지역사회의 반발 요소까지 줄일 수 있어 해당 업계의 표준으로 자리잡고 있는 중이다. 다만 부표식의 동요에 따른 외란적 요소가 관측자료의 신뢰성에 영향을 미치는 만큼 안정적인 플랫폼의 설계 및 검증이 매우 중요한 상황이며, 국내에서는 해당기술에 대한 늦은 진입으로 인해 다수의 외산장비 제조사들이 국내시장까지 선점하고 있는 상황이다. 한국의 서해안은 천해 환경으로 조석차가 매우 커 지역에 따라 강한 조류가 반복적으로 나타나며, 계절별로 상이한 강한 에너지의 파랑이 형성되는 등 플랫폼에 안정도에 많은 영향을 미치는 바다 환경을 갖고 있다. 본 논문에서는 이러한 복잡한 환경적 특성을 갖고 있는 우리나라의 해역에 라이다 운영에 적합한 부표식에 대한 연구를 수행하며, 우선적으로 적용하였던 선박형 부표식의 최적화 설계 및 검증 사례를 소개하고, 향후 다양한 플랫폼 개발에 토대가 되는 중요 개념을 도출하고자 한다.

  • PDF

A Study on Facilities Damage Characteristics Caused by Forest Fire in Goseong-Gun (고성산불로 인한 시설물피해특성 연구)

  • Yeom, Chanho;Lee, Si-young;Park, Houngsek;Kwon, Chungeun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.469-478
    • /
    • 2019
  • Purpose: In this studies we examine the facilities damage characteristics caused by forest fire. Therefore, we surveyed damaged facilities from forest fire which was occurred on Goseong-Gun on march 28 in 2019.(damaged areas was 40ha) The types of facilities uses were house, public facility, warehouse and so on. 17 facilities were destroyed. The purpose of this study was to for establishing a disaster safety village in rural areas where damage from a similar type of disaster occurs repeatedly by conducting the consciousness survey targeting at experts and disaster safety officials in a local government. Method: We surveyed meteorological factors(temperature, wind speed, wind direction, humidity) per a minute for analyzing weather condition on Goseong-Gun when forest fire was occurred, spread and extinguished. And we surveyed forest fire risk factors(a slope degree, a slope direction, a geographical feature, a distance between forest and facility, main species, the existence of crown fire ignition, the direction of facility, the main material of building) around 10 damaged facilities. Finally, we analyzed damage pattern of facilities using meteorological factor and forest fire reisk fator Result: The weather condition of Kanseonng AWS (No.517) was high temperature, arid and strong wind, when the forest fire was occurred and spread. An average wind speed was 4.1m/s and the maximum wind speed was 11.6m/s. The main direction of wind was W(225~315°). Damaged facilities were located on the steep slope area and on the mountaintop. The forest density around facilities was high and main species was korean red pine. The crown fire was occurred in the forest around damaged facilities. The average distance was 13.5m from forest to facilities. When the main matarial of building was made by fire resistance materials (for example, rainforced concrete), the damage was slightly. on the other hand, when by flammable material (for example, a Sandwich Panel), the facilities were totally destroyed Conclusion: The results of this research which were the thinning around house, making a safety distance, the improvement of main material of building and etc, will be helpful for establishing a counter measure for a forest fire prevention of facilities in wild land urban interface

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.