해수면온도는 해양-대기의 현상을 이해하고 기후변화를 예측하기 위해 사용되는 중요한 변수이다. 마이크로파 영역의 인공위성 원격탐사는 구름과 강수와 같은 기상현상 위성 관측 측기의 경로에 존재하더라도 해수면온도 획득을 가능하게 한다. 따라서 마이크로파 해수면온도의 높은 활용도를 고려하면 위성 해수면온도를 정확도를 지속적으로 검증하고 오차 특성을 분석할 필요가 있다. 본 연구에서는 2014년 3월부터 2021년 12월까지 약 8년 동안 Global Precipitation Measurement (GPM)/GPM Microwave Imager (GMI) 마이크로파 해수면온도의 정확도를 표층 뜰개 부이 수온 자료를 사용하여 검증하였다. GMI 해수면온도는 실측 해수면온도에 비해 0.09 K의 편차와 0.97 K의 평균 제곱근 오차를 보였고, 이는 기존 연구 결과에 비해 다소 높게 나타났다. 이외에도 GMI 해수면 온도의 오차 특성은 위도, 연안과의 거리, 해상풍 및 수증기량과 같은 환경적 요인과 관련성이 있다. 오차는 육지에서 300 km 이내의 거리에서 해안 지역에 가까운 지역과 고위도 지역에서 증가하는 경향이 있다. 또한 낮에는 약한 풍속(<6 m s-1), 밤에는 강한 풍속(>10 m s-1) 범위에서 상대적으로 높은 오차가 나타났다. 대기 수증기는 30 mm 미만의 매우 낮은 범위 또는 60 mm보다 큰 매우 높은 범위에서 높은 해수면온도 차이에 기여했다. 이러한 오차들은 저수온에서 GMI 자료의 정확도가 떨어지는 기존 연구와 일치하며, 연안으로부터의 거리, 풍속, 수증기량에 의한 오차의 경우 육지와 해양의 방사율 차이 및 바람에 의한 해수면 거칠기 변화, 수증기의 마이크로파 대기 흡수에서 기인하는 것으로 추정된다. 이는 한반도 주변해에서 마이크로파 위성 계산 SST를 보다 광범위하게 활용하기 위해서는 GMI 해수면온도 오차의 특성에 대한 이해가 필요함을 시사한다.
농업용 저수지는 전국적으로 중요한 수자원으로 기후변화에 따른 가뭄과 같은 이상기후의 영향에 취약한 특성을 가지며 적절한 운영을 위해 강화된 관리가 필요하다. 지속적인 모니터링을 통한 수위 추적(water level tracking)이 필요하지만 현실적인 문제로 현장 실측 및 관측이 어려운 실정이다. 본 연구는 저수지 수표면적을 측정하기 위해 광역 모니터링이 가능한 위성레이더 자료를 이용하여 4가지 AI 모델 간의 수체 탐지 성능에 대해 객관적인 비교를 제시한다. 위성 레이더자료는 Sentinel-1 SAR 이미지를 사용하였으며, 광학영상과 달리 기상환경에 영향을 적게 받기 때문에 장기 모니터링에 적합하다. 드론 이미지, Sentinel-1 SAR 그리고 DSM 데이터를 사용하여 Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), Automated Machine Learning (AutoML)의 4가지 AI 모델을 구축했다. 연구대상 저수지는 총 22개소로 유효저수량이 30만톤 미만의 중소형 저수지이다. 총 45개 이미지가 모델 훈련과 검증에 사용되었으며, 연구 결과 AutoML 모델이 Accuracy=0.92, mIoU=0.81로 다른 3가지 모델에 비해 수체 픽셀 분류에서 0.01-0.03 더 나은 것을 보여주었다. 해당 결과는 SAR 영상으로부터 AutoML을 이용한 중소형 저수지 대상의 수체 분류 기법이 기존의 머신러닝 기법만큼의 성능을 보이는 것을 보여주었고, 학습을 통한 수표면적 분류 기술의 저수지 모니터링에 대한 적용 가능성을 보여주었다.
적설에 의한 피해는 자주 발생하지 않지만 발생하면 광범위한 지역에 피해를 준다. 적설에 의한 피해를 예방하기 위해서는 지역별로 피해를 유발하는 적설심을 미리 파악해 둘 필요가 있다. 하지만 관측하고 있는 적설심은 특정 관측지점으로 한정되어 피해를 유발하는 지역별 피해유발적설심을 파악하는데 어려움이 있다. 이를 극복하기 위한 일반적인 방법은 관측지점의 적설을 보간하여 공간적으로 확대하는 것이다. 하지만 이것은 매우 적은 자료를 가지고 고도 등 지형적인 특성이 다른 넓은 영역을 통계적으로 추론해야 하는 한계로 인해 지역에 대한 피해유발 피해유발적설심의 구명에 더 혼란을 주기도 한다. 이를 보완하기 위해서는 넓은 영역을 관측하는 위성영상을 활용할 수 있으며, 그 중에서도 합성개구레이더(Synthetic Aperture Radar; SAR)를 이용한 위상차분 간섭기법(DInSAR)을 활용할 수 있다. 위상간섭영상은 두 개의 다른 시기에 측정된 합성개구레이더 영상의 위상간섭을 이용한 것으로 일반적으로 미세한 지형의 변화를 추적할 때 사용되기도 한다. 본 연구에서는 유럽우주국(ESA)에서 운영하는 Sentinel-1B 위성의 dual polarimetric IW 모드 C-band SAR 데이터를 사용하여 DInSAR 분석을 수행하여 적설심의 공간분포를 추정하였다. 또한 정지궤도복합위성 천리안 2호(GK-2A)의 L2 적설심 추정 자료를 이용하여 비교하였다. 적용 결과, 적설예측의 정확도는 격자별로 계산할 경우, DInSAR 는 약 0.92%, GK-2A 는 약 0.71% 를 나타내 DInSAR의 적용성이 높게 나타났다. 즉, DInSAR 방법을 이용하여 계산된 적설심과 기상관측소에서 관측된 적설심을 공간보간하여 비교한 결과, 적설의 분석 결과 적설심을 과대추정하는 경우가 발생하기는 했으나, 적설심의 공간분포를 추정하는데 충분한 정보를 제공했으며, 이러한 방법으로 파악된 적설심의 공간분포는 실제 피해발생지역의 적설심을 보다 정확하게 추정하는데 기여할 수 있으며, 이것은 지역별 피해유발적설심을 파악하는데 도움이 될 것이다.
집중호우, 홍수 및 도시침수와 같은 재해를 저감시키기 위하여 자연 재난으로 인한 재해의 발생 여부를 사전에 파악하는 것은 중요하다. 현재 국내는 기상청에서 운영하고 있는 호우주의보 및 호우경보를 발령하고 있지만, 이는 전국에 일괄적인 기준으로 적용하고 있어 사전에 호우로 인한 피해를 명확하게 인지하지 못하고 있는 실정이다. 따라서, 일괄된 기준을 지역적 특성을 반영한 호우특보 기준으로 재설정하고 1시간 후에 강우로 발생할 수 있는 피해의 규모를 예측하고자 하였다. 연구 대상 지역으로는 호우피해가 가장 빈번하게 발생하였던 경기도 지역으로 선정하였고, 강우량 및 호우 피해액 자료를 활용하여 지역적 특성을 고려한 시간단위 재해 유발 강우를 설정하였다. 강우에 의한 호우피해 발생 여부를 예측하는 모형을 개발하기 위해 재해 유발 강우 및 강우 자료를 활용하였으며, 머신러닝 기법인 의사 결정 나무 모형과 랜덤 포레스트 모형을 활용하여 분석 및 비교하였다. 또한 1시간 후의 강우를 예측하기 위한 모형으로는 장단기 메모리, 심층 신경망 모형을 활용하여 분석 및 비교하였다. 최종적으로 예측 모형을 통해 예측된 강우를 훈련된 분류 모형에 적용하여 1시간 후 호우에 의한 규모별 피해 발생 여부를 예측하였고, 이를 1ST-모형이라고 정의하였다. 본 연구를 통해 개발된 1ST-모형을 활용하여 예방 및 대비 차원의 재난관리를 실시한다면 호우로 인한 피해를 저감하는데 기여 할 수 있을 것으로 판단된다.
본 연구는 생애주기관점의 불평등 가설에 따라, OECD 10개국 노인의 소득불평등을 연구하였다. 불평등 요인 가운데 개인의 초기 사회적 지위는 교육수준, 사회구조·제도는 복지체제에 주목하여, 생애주기상 비노년기에서 노년기로 이행한 사람들의 소득불평등을 분석하였다. 자료는 유럽의 SHARE와 미국의 HRS 패널자료이다. 분석결과 첫째, 지체제와 교육수준이 주된 불평등 요인으로 나타났다. 둘째, 소득불평등은 비노년기 시점에서 노년기 시점으로 이행하면 다소 감소하지만, 여전히 상당히 높다(지니계수 .475). 복지체제별로 보면 보수주의 체제는 비노년기에도 소득불평등이 높은데, 노년기가 되면 더 높아져 누적 이익/불리 가설의 경향을 띤다. 자유주의 체제는 소득불평등이 높은 상태로 지속되어 지위유지 가설과 유사하다. 사민주의 체제는 비노년기에도 소득불평등이 낮은데, 노년기가 되면 더 낮아져 지위평등화 가설을 지지한다. 셋째, 비노년기에서 노년기로 이행하면 교육수준에 따른 누적된 이익/불리가 강화되어 총소득의 이질성이 커진다. 그러나 공적연금은 총소득보다 평등하게 분배되어 있다. 넷째, 복지체제별로 보면 자유주의 체제, 보수주의 체제의 공적연금은 비노년기보다 노년기에 더 불평등하게 분배되었다. 특히 보수주의 체제는 노년기의 소득불평등이 매우 높은데, 공적연금도 총소득만큼이나 불평등하게 분배되어 있다. 사회보장제도가 누적된 이익/불리를 강화하는 것으로 보인다. 반면 사민주의 체제는 공적연금이 총소득보다 평등하게 분배되고, 노년기가 되면 더 평등하게 분배되어 지위평등화 가설을 지지한다.
수자원의 계절적 편중이 심한 한반도에서 농업용 저수지는 이를 효과적으로 유지 및 관리하기 위한 필수적인 구조물이다. 저수지 모니터링을 위한 수단으로 광학 및 합성개구레이더(Synthetic Aperture Radar, SAR) 위성영상이 활용되고 있으나, 광학영상은 기상현상에 의한 간섭이 심하다는 한계점이 존재하며, SAR 영상은 짙은 식생에서 일어나는 다중 산란 및 노이즈에 의한 오탐지 및 미탐지가 발생하기 쉽다. 이에 본 연구에서는 광학 영상과 SAR 영상의 융합을 통해 저수지 수체 탐지 정확도를 높이고 상호보완적 작용에 대해 정량적으로 분석하고자 하였다. 경기도 이동저수지, 충청남도 천태 저수지를 대상으로, 국내 고해상도 위성인 차세대중형위성 1호, 다목적실용위성 3호 및 3A호, 그리고 유럽우주국의 Sentinel-2 영상 기반 Normalized Difference Water Index (NDWI)와 SAR 탑재 위성인 Sentinel-1 단일 영상에 비지도학습 기법인 K-means 클러스터링 기법을 사용하여 수체를 탐지하고, NDWI-SAR 후방산란계수로 이루어진 2-D grid space에 동일 기법을 활용하여 정확도의 향상 정도를 파악하였다. 전반적인 정확도는 다목적실용위성이 가장 높은 것으로 나타났으며(두 저수지 모두 0.98), 이후 Sentinel-1(두 저수지 모두 0.93), Sentinel-2(이동: 0.83, 천태: 0.97), 차세대중형위성(이동: 0.69, 천태: 0.78) 순서로 감소하였다. 천태저수지에서 2-D K-means 클러스터링 기법을 적용한 결과 차세대중형위성의 수체탐지 정확도는 약 85%의 정밀도 향상과 14%의 재현율 감소와 함께 약 22% 향상되었으며(정확도 약 0.95), 다목적실용위성 및 Sentinel-2의 수체탐지 정밀도는 3-5% 향상되었고, 재현율은 4-7% 감소하였다. 추후 차세대중형위성 5호인 수자원위성 등 고해상도 SAR 위성과 이를 활용할 수 있는 고도화된 영상 융합기술, 수체 탐지 기술이 개발된다면 국내 수자원에 대한 매우 정확한 모니터링이 가능할 것으로 기대된다.
대기 중 에어로졸은 인체에 악영향을 끼칠 뿐 아니라 기후 시스템에도 직간접적인 영향을 미치므로 에어로졸의 특성과 시공간적인 분포에 대한 이해는 매우 중요하다. 이를 위해 위성기반 관측을 통해 에어로졸 광학 두께(Aerosol Optical Depth, AOD)를 산출하여 에어로졸을 모니터링하는 다양한 연구가 수행되어 왔다. 하지만 이는 주로 조견표를 활용한 역 산출 알고리즘에 기반하여 이루어지기 때문에 많은 계산량을 요구하며 불확실성이 존재한다. 따라서, 본 연구에서는 Geostationary Ocean Color Imager-II (GOCI-II)의 대기상한반사도와 30일 동안의 대기상한반사도 중 최솟값과 관측 시점 값의 차이 값, 수치 모델 기반 기상학적 변수 등을 활용하여 기계학습 기반 고해상도 AOD 직접 산출 알고리즘을 개발하였다. Light Gradient Boosting Machine (LGBM) 기법이 사용되었으며, 추정된 결과는 지상 관측 자료인 Aerosol Robotic Network (AERONET) AOD를 활용하여 랜덤, 시간 및 공간별 N-fold 교차검증을 통해 검증되었다. 세 가지 교차검증 결과 R2=0.70-0.80, RMSE=0.08-0.09, 기대오차(Expected Error, EE) 안에 있는 비율은 75.2-85.1% 수준으로 안정적인 성능을 보였다. Shapley Additive exPlanations (SHAP) 분석에서는 반사도 관련 변수들이 기여도의 상위권 대부분을 차지하고 있는 것을 통해 반사도 자료가 AOD 추정에 많은 기여를 하는 것을 확인하였다. 서울과 울산 지역에 대한 시간 별 AOD의 공간 분포를 분석한 결과, 개발된 LGBM 모델은 시간의 흐름에 따라 AERONET AOD 값과 유사한 수준으로 AOD를 추정하고 있었다. 이를 통해 높은 시공간 해상도(i.e., 시간별, 250 m)에서의 AOD 산출이 가능함을 확인하였다. 또한, 산출 커버리지 비교에서 LGBM 모델의 평균 산출 빈도가 GOCI-II L2 AOD 산출물 대비 8.8%가량 증가한 것을 통해 기존 물리모델기반 AOD 산출 과정에서 발생하던 밝은 지표면에 대한 과도한 마스킹의 문제점을 개선시킨 것을 확인하였다.
우리나라의 강우 특성은 여름철 홍수기에 집중되어있다. 특히 이상강우 및 기상이변에 의한 집중강우의 증가 추세로 다량의 탁수가 댐 내에 유입될 시 전도현상으로 인해 탁수 장기화 현상이 발생하게 된다. 이러한 문제를 해결하기 위한 탁수 예측을 통한 선제적 조치 방안 또는 댐 운영방안 마련에 많은 연구가 진행되고 있다. 탁수 예측을 위해서는 상류 유입부의 탁수 자료를 필요로 하지만 현재 시·공간적인 데이터 해상도는 부족한 실정이다. 시간적 해상도 개선을 위해서는 탁도-SS 관계식에 대한 개발을 필요로 하며 공간적 해상도 개선을 위해 다항목수질측정기(YSI), 레이저부유사측정기(Laser In-Situ Scattering and Transmissometry, LISST), 초분광 센서 등의 센서 기반 측정을 통해 선, 면 단위 데이터 측정을 통해 탁수에 대한 공간적 해상도를 개선할 수 있다. 또한 LISST-200X의 경우 입경 크기 등에 대한 자료 수집이 가능함에 따라 분율(Clay : Silt : Sand)에 대한 탁도-SS 관계식에 활용될 수 있다. 또한 최근 원격탐사 방안 중 다른 탑재체에 비해 공간해상도 및 시간해상도가 높은 UAV와 분광·방사 해상도가 높은 초분광 센서를 활용 시 탁수 발생에 대한 공간적인 분포를 제시할 수 있다. 따라서, 본 연구에서는 LISST-200X 및 YSI-EXO를 활용하여 실험실 분석을 통해 분율(Clay : Silt : Sand)에 따라 탁도-SS 관계식을 산정하였으며 UAV (Matrice 600), 초분광센서(microHSI 410 SHARK)를 포함한 센서 기반 현장 측정을 통해 탁도와 부유사 농도, 측정된 부유사농도 기반 탁도-SS 관계식을 이용하여 산정한 탁도에 대하여 공간적 분포를 제시하였다. 이를 통해 탁도-SS 관계식에 대한 적용성 검토 및 탁수 발생 현황에 대하여 파악하고자 하였다.
딥러닝을 활용하여 유역 특성을 반영한 유량 예측 및 비교 연구가 주목받고 있다. 본 연구는 셀프 어텐션 메커니즘을 통해 대용량 데이터 훈련에 적합한 Transformer와 인코더-디코더(Encoder-Decoder) 구조를 가지는 LSTM-based multi-state-vector sequence-to-sequence (LSTM-MSV-S2S) 모형을 선정하여 유역정보(catchment attributes)를 고려할 수 있는 모형을 구축하였고 이를 토대로 국내 10개 다목적댐 유역의 유입량을 예측하였다. 본 연구에서 설계한 실험 구성은 단일유역-단일훈련(Single-basin Training, ST), 다수유역-단일훈련(Pretraining, PT), 사전학습-파인튜닝(Pretraining-Finetuning, PT-FT)의 세 가지 훈련 방법을 사용하였다. 모형의 입력 자료는 선정된 10가지 유역정보와 함께 기상 자료를 사용하였으며, 훈련 방법에 따른 유입량 예측 성능을 비교하였다. 그 결과, Transformer 모형은 PT와 PT-FT 방법에서 LSTM-MSV-S2S보다 우수한 성능을 보였으며, 특히 PT-FT 기법 적용 시 가장 높은 성능을 나타냈다. LSTM-MSV-S2S는 ST 방법에서는 Transformer보다 높은 성능을 보였으나, PT 및 PT-FT 방법에서는 낮은 성능을 보였다. 또한, 임베딩 레이어 활성화 값과 원본 유역정보를 군집화하여 모형의 유역 간 유사성 학습 여부를 분석하였다. Transformer는 활성화 벡터가 유사한 유역들에서 성능이 향상되었으며, 이는 사전에 학습된 다른 유역의 정보를 활용해 성능이 개선됨을 입증하였다. 본 연구는 다목적댐별 적합한 모형 및 훈련 방법을 비교하고, 국내 유역에 PT 및 PT-FT 방법을 적용한 딥러닝 모형 구축의 필요성을 제시하였다. 또한, PT 및 PT-FT 방법 적용 시 Transformer가 LSTM-MSV-S2S보다 성능이 더 우수하였다.
우리나라의 공원과 옥외 공공 공간에서 쉽게 접할 수 있는 조경용 차양시설과 녹음수가 하절기 옥외 공간에서 태양광의 자외선을 실질적으로 얼마나 차단하는가를 객관적으로 검증하기 위하여, 대표적인 조경용 차양시설인 목재쉘터, 막구조물과 녹음수인 버드나무 하부의 자외선량을 현장에서 연속적으로 측정하여 태양광과 비교 분석하였다. 자외선 현장측정을 위하여 자외선 A와 B의 조사량을 지속적으로 측정 및 기록할 수 있는 자동시스템을 구축하였으며, 이를 각 시험구의 중앙부에 설치하여 지상 1.1m 위치의 연직방향 자외선량을 2012년 7월에서 9월의 오전 9시부터 17시까지 매 분 단위로 기록하였다. 기상조건과 계측자료의 유효성 등을 고려하여 총 17일 동안의 자외선량을 바탕으로 시험구별 특성을 해석하였는데, 대조구에서 관측된 오전 10시부터 오후 4시까지의 총 648건의 10분 단위 평균데이타를 바탕으로 태양광 UVA+B와 UVB의 일중 시간대별 특성과 월별 특성을 비교하였다. 시설별 자외선량 비교에는 태양광의 자외선량이 현격하게 떨어지는 9월의 자료를 제외하고, 7월과 8월의 15일치 자료 중 오전 10시부터 오후 4시까지 총 2,052건의 데이터를 바탕으로 분석하였다. 시험기간 동안 태양광의 UVA+B는 평균 $1,148{\mu}W/cm^2$로 측정되었는데, 이때 목재쉘터와 막구조물, 녹음수 하부에서 측정된 평균값은 각각 $39{\mu}W/cm^2$(3.4%), $74{\mu}W/cm^2$(6.4%), $87{\mu}W/cm^2$(7.6%)에 불과했다. 즉, 목재쉘터가 약 97%의 자외선 차단율을 보여 가장 효과적인 것으로 나타났으며, 녹음수와 막구조물이 약 93%의 차단율을 보임으로서 세 시험구 모두 한낮동안의 자외선을 최소 약 93% 이상 차단하는 것이 확인되었다. UVB의 경우, 태양광이 $207{\mu}W/cm^2$의 평균값을 보일 때 목재쉘터와 녹음수 및 막구조물이 각각 $12{\mu}W/cm^2$(5.8%), $17{\mu}W/cm^2$(8.2%), $26{\mu}W/cm^2$(13%)로 평균값이 분석되어, 막구조물의 차단율이 상대적으로 낮은 것이 확인되었다. 그러나, 전체적으로 태양광의 자외선량과 상대적으로 비교했을 때, 태양의 남중고도가 높은 한낮 동안에는 시험구별로 측정된 자외선량에서 큰 차이가 있다고 보기는 어려웠다. 반면에, 차양시설과 수목의 형태적 특성에 의해 태양남중고도에 따라서 측면으로 조사되는 자외선이 이른 오전과 늦은 오후에 높은 수준으로 측정되는데, 이것이 하절기 인간의 옥외활동에 더 큰 장애요인이 되는 것으로 해석되었다. 결론적으로 조경용 차양시설과 녹음수는 하절기 옥외공간의 태양광에 의한 자외선을 최소 93% 이상 차단하는 것으로 나타났다. 차양면의 재료와 특성에 따라서 차단율에 다소 차이는 발생하였지만, 전체적으로 비슷한 성능을 보인 것으로 해석되었다. 다만, 차양시설의 구조적 형태적 특성에 따라서 측면으로 유입되는 자외선을 차단할 수 있는 방안이 보완된다면, 옥외의 쾌적한 휴식공간으로 기능할 수 있을 것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.